A new method for image segmentation
On the basis of analyzing the blur images with noise, this paper presents a new segmentation method which is based on the morphology method, fuzzy K-means algorithm and some parts operator of the Canny algorithm. Because of the Canny's good performance on good detection, good localization and o...
Uloženo v:
| Vydáno v: | 2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications Ročník 2; s. 123 - 125 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.11.2009
|
| Témata: | |
| ISBN: | 1424446066, 9781424446063 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | On the basis of analyzing the blur images with noise, this paper presents a new segmentation method which is based on the morphology method, fuzzy K-means algorithm and some parts operator of the Canny algorithm. Because of the Canny's good performance on good detection, good localization and only one response to a single edge, we introduce the course of Canny operator that calculating the value and direction of grads, non-maxima suppression to the grad value and lag threshold process into our post-treatment process. Through experiments, it is demonstrated that the image segmentation method in this paper is very effective. |
|---|---|
| ISBN: | 1424446066 9781424446063 |
| DOI: | 10.1109/PACIIA.2009.5406610 |

