A new method for image segmentation

On the basis of analyzing the blur images with noise, this paper presents a new segmentation method which is based on the morphology method, fuzzy K-means algorithm and some parts operator of the Canny algorithm. Because of the Canny's good performance on good detection, good localization and o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications Ročník 2; s. 123 - 125
Hlavní autoři: Wang Guitang, Zhu Jianlin, Wei Qingchun, Xin Huasheng, Cao Peiliang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2009
Témata:
ISBN:1424446066, 9781424446063
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:On the basis of analyzing the blur images with noise, this paper presents a new segmentation method which is based on the morphology method, fuzzy K-means algorithm and some parts operator of the Canny algorithm. Because of the Canny's good performance on good detection, good localization and only one response to a single edge, we introduce the course of Canny operator that calculating the value and direction of grads, non-maxima suppression to the grad value and lag threshold process into our post-treatment process. Through experiments, it is demonstrated that the image segmentation method in this paper is very effective.
ISBN:1424446066
9781424446063
DOI:10.1109/PACIIA.2009.5406610