BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization
Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve...
Saved in:
| Published in: | 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) pp. 592 - 597 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2018
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve the energy efficiency of the wireless sensor network and prolong the network lifetime, this paper uses fuzzy control to update the particle position in the algorithm, and proposes a BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization(AFPSOBP) algorithm. The simulation results show that compared with BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle Swarm (GAPSOBP), it can further reduce network traffic, save node energy and prolong network lifetime. |
|---|---|
| AbstractList | Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve the energy efficiency of the wireless sensor network and prolong the network lifetime, this paper uses fuzzy control to update the particle position in the algorithm, and proposes a BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization(AFPSOBP) algorithm. The simulation results show that compared with BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle Swarm (GAPSOBP), it can further reduce network traffic, save node energy and prolong network lifetime. |
| Author | Yu, Kun Yang, Mengjie Li, Xuemei Zhang, Shudong Geng, Yushui |
| Author_xml | – sequence: 1 givenname: Mengjie surname: Yang fullname: Yang, Mengjie email: 1602808030@qq.com organization: School of Information, Qilu University of Technology (Shandong Academy of Sciences) – sequence: 2 givenname: Yushui surname: Geng fullname: Geng, Yushui email: 1602808030@qq.com organization: Graduate School, Qilu University of Technology (Shandong Academy of Sciences) – sequence: 3 givenname: Kun surname: Yu fullname: Yu, Kun email: 1602808030@qq.com organization: School of Information, Qilu University of Technology (Shandong Academy of Sciences) – sequence: 4 givenname: Xuemei surname: Li fullname: Li, Xuemei email: 1602808030@qq.com organization: School of Information, Qilu University of Technology (Shandong Academy of Sciences) – sequence: 5 givenname: Shudong surname: Zhang fullname: Zhang, Shudong email: 1602808030@qq.com organization: School of Information, Shandong Normal University, Jinan, 250353, China |
| BookMark | eNo9j0FPg0AUhNdED7b6B_SyfwDcBwssR8VWmzTWA_fmsfvQjRTIstiUXy_Gxst8yUxmklmwy7ZribE7ECGAyB825W5VhJEAFapMCinFBVtAEqs0ibMov2b09M7faHTYzPDHzn3xZ_TI1-Ngu5Zj89E56z8PvOu9PdiJDK9wmPU3NDib38TrcZpOvEfnrW6ID0d0_wX0884Nu6qxGej2zCUr16uyeA22u5dN8bgNbC58IAElSoGga4OgtMkggajOEkJjtJJaKpGrWGohZEZVnEAKEOUmrSuNdUbxkt3_zVoi2vfOHtCd9ufj8Q-k5VSW |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ITOEC.2018.8740440 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538653729 1538653737 9781538653739 9781538653722 |
| EndPage | 597 |
| ExternalDocumentID | 8740440 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-41a4a40a1cfda18cd71512f75eaddc84c4809834c0047eb35161129d6fbcaf7e3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:13:45 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-41a4a40a1cfda18cd71512f75eaddc84c4809834c0047eb35161129d6fbcaf7e3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8740440 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Dec. |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) |
| PublicationTitleAbbrev | ITOEC |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6729212 |
| Snippet | Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 592 |
| SubjectTerms | Adaptive systems Biological neural networks Data Fusion Data integration Fuzzy Control Optimization Particle swarm optimization Wireless sensor networks WSN |
| Title | BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization |
| URI | https://ieeexplore.ieee.org/document/8740440 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QePCkBoy_04NHCxst63YVIXpBDhy4kdf2VUmAEdg07q-33SbGxIunNWu3Jn1tv_fa995HyF0QohHQQxZJ0MxT3bNEWWRSAbccLbdRRTYhx-N4NksmDXK_j4VBxNL5DDu-WN7lm1Tn_qis6-njhHAG-oGUURWr9R0HEyTd5-nLcOCdteJO3fAXY0oJGKPj_3V1Qto_kXd0sseUU9LAdYvgw4T6JBqwdI_Sa5s-QgZ0lPujLgrL19SZ-G8rmrr1v1oUaKgHJ0N9pYGN39GozYvik27qmUJ3H7Ddf1BKp02mo-F08MRqegS2SIKMiRAEiABCbQ2EsTbSg7eVfTc3jI6FFnGQxFxonxDSmcx9p9s5cDeRVRqsRH5Gmut0jeeEOqUAlOlh1HNgpQ0kBjgop1kAV-6n6oK0_AjNN1UCjHk9OJd_v74iR14Ilc_HNWlm2xxvyKF-zxa77W0ptS9Csp3v |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImuhJDRjf9uDRwj7KPq4iBCIihz1wI7PtVElgl8CuRn697e6KMfHiaZvtK-k0_WbamfkIubNslBwcZJ4PghmqexbGCpkfg6tcVK7ySrIJfzwOptNwUiP3u1gYRCycz7BlisVbvkxFbq7K2oY-jnNtoO91OHesMlrrOxLGCtvD6KXXNe5aQatq-oszpYCM_tH_JjsmzZ_YOzrZocoJqWHSIPgwoSaNBiz0p_Dbpo-QAe3n5rKLwuI11Ub-25Km-gRYzrcoqYEnSU2lhJU506jKt9tPuqr2Ct18wHrXoZBPk0T9XtQdsIoggc1DK2PcBg7cAlsoCXYgpG_gW_kdvTukCLjggRUGLhcmJaQ2mjtau9PwLj0VC1A-uqeknqQJnhGq1QKIpYOeo-FKSAgluBBr3QLcWA8an5OGWaHZqkyBMasW5-Lv37fkYBA9j2aj4fjpkhwagZQeIFeknq1zvCb74j2bb9Y3hQS_AKSmoTY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+4th+Information+Technology+and+Mechatronics+Engineering+Conference+%28ITOEC%29&rft.atitle=BP+Neural+Network+Data+Fusion+algorithm+optimized+based+on+adaptive+fuzzy+particle+swarm+optimization&rft.au=Yang%2C+Mengjie&rft.au=Geng%2C+Yushui&rft.au=Yu%2C+Kun&rft.au=Li%2C+Xuemei&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=592&rft.epage=597&rft_id=info:doi/10.1109%2FITOEC.2018.8740440&rft.externalDocID=8740440 |