BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization

Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) pp. 592 - 597
Main Authors: Yang, Mengjie, Geng, Yushui, Yu, Kun, Li, Xuemei, Zhang, Shudong
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve the energy efficiency of the wireless sensor network and prolong the network lifetime, this paper uses fuzzy control to update the particle position in the algorithm, and proposes a BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization(AFPSOBP) algorithm. The simulation results show that compared with BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle Swarm (GAPSOBP), it can further reduce network traffic, save node energy and prolong network lifetime.
AbstractList Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve the energy efficiency of the wireless sensor network and prolong the network lifetime, this paper uses fuzzy control to update the particle position in the algorithm, and proposes a BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization(AFPSOBP) algorithm. The simulation results show that compared with BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle Swarm (GAPSOBP), it can further reduce network traffic, save node energy and prolong network lifetime.
Author Yu, Kun
Yang, Mengjie
Li, Xuemei
Zhang, Shudong
Geng, Yushui
Author_xml – sequence: 1
  givenname: Mengjie
  surname: Yang
  fullname: Yang, Mengjie
  email: 1602808030@qq.com
  organization: School of Information, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 2
  givenname: Yushui
  surname: Geng
  fullname: Geng, Yushui
  email: 1602808030@qq.com
  organization: Graduate School, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 3
  givenname: Kun
  surname: Yu
  fullname: Yu, Kun
  email: 1602808030@qq.com
  organization: School of Information, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 4
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  email: 1602808030@qq.com
  organization: School of Information, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 5
  givenname: Shudong
  surname: Zhang
  fullname: Zhang, Shudong
  email: 1602808030@qq.com
  organization: School of Information, Shandong Normal University, Jinan, 250353, China
BookMark eNo9j0FPg0AUhNdED7b6B_SyfwDcBwssR8VWmzTWA_fmsfvQjRTIstiUXy_Gxst8yUxmklmwy7ZribE7ECGAyB825W5VhJEAFapMCinFBVtAEqs0ibMov2b09M7faHTYzPDHzn3xZ_TI1-Ngu5Zj89E56z8PvOu9PdiJDK9wmPU3NDib38TrcZpOvEfnrW6ID0d0_wX0884Nu6qxGej2zCUr16uyeA22u5dN8bgNbC58IAElSoGga4OgtMkggajOEkJjtJJaKpGrWGohZEZVnEAKEOUmrSuNdUbxkt3_zVoi2vfOHtCd9ufj8Q-k5VSW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITOEC.2018.8740440
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538653729
1538653737
9781538653739
9781538653722
EndPage 597
ExternalDocumentID 8740440
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-41a4a40a1cfda18cd71512f75eaddc84c4809834c0047eb35161129d6fbcaf7e3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:45 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-41a4a40a1cfda18cd71512f75eaddc84c4809834c0047eb35161129d6fbcaf7e3
PageCount 6
ParticipantIDs ieee_primary_8740440
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC)
PublicationTitleAbbrev ITOEC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6729212
Snippet Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of...
SourceID ieee
SourceType Publisher
StartPage 592
SubjectTerms Adaptive systems
Biological neural networks
Data Fusion
Data integration
Fuzzy Control
Optimization
Particle swarm optimization
Wireless sensor networks
WSN
Title BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization
URI https://ieeexplore.ieee.org/document/8740440
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QePCkBoy_04NHCxst63YVIXpBDhy4kdf2VUmAEdg07q-33SbGxIunNWu3Jn1tv_fa995HyF0QohHQQxZJ0MxT3bNEWWRSAbccLbdRRTYhx-N4NksmDXK_j4VBxNL5DDu-WN7lm1Tn_qis6-njhHAG-oGUURWr9R0HEyTd5-nLcOCdteJO3fAXY0oJGKPj_3V1Qto_kXd0sseUU9LAdYvgw4T6JBqwdI_Sa5s-QgZ0lPujLgrL19SZ-G8rmrr1v1oUaKgHJ0N9pYGN39GozYvik27qmUJ3H7Ddf1BKp02mo-F08MRqegS2SIKMiRAEiABCbQ2EsTbSg7eVfTc3jI6FFnGQxFxonxDSmcx9p9s5cDeRVRqsRH5Gmut0jeeEOqUAlOlh1HNgpQ0kBjgop1kAV-6n6oK0_AjNN1UCjHk9OJd_v74iR14Ilc_HNWlm2xxvyKF-zxa77W0ptS9Csp3v
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImuhJDRjf9uDRwj7KPq4iBCIihz1wI7PtVElgl8CuRn697e6KMfHiaZvtK-k0_WbamfkIubNslBwcZJ4PghmqexbGCpkfg6tcVK7ySrIJfzwOptNwUiP3u1gYRCycz7BlisVbvkxFbq7K2oY-jnNtoO91OHesMlrrOxLGCtvD6KXXNe5aQatq-oszpYCM_tH_JjsmzZ_YOzrZocoJqWHSIPgwoSaNBiz0p_Dbpo-QAe3n5rKLwuI11Ub-25Km-gRYzrcoqYEnSU2lhJU506jKt9tPuqr2Ct18wHrXoZBPk0T9XtQdsIoggc1DK2PcBg7cAlsoCXYgpG_gW_kdvTukCLjggRUGLhcmJaQ2mjtau9PwLj0VC1A-uqeknqQJnhGq1QKIpYOeo-FKSAgluBBr3QLcWA8an5OGWaHZqkyBMasW5-Lv37fkYBA9j2aj4fjpkhwagZQeIFeknq1zvCb74j2bb9Y3hQS_AKSmoTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+4th+Information+Technology+and+Mechatronics+Engineering+Conference+%28ITOEC%29&rft.atitle=BP+Neural+Network+Data+Fusion+algorithm+optimized+based+on+adaptive+fuzzy+particle+swarm+optimization&rft.au=Yang%2C+Mengjie&rft.au=Geng%2C+Yushui&rft.au=Yu%2C+Kun&rft.au=Li%2C+Xuemei&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=592&rft.epage=597&rft_id=info:doi/10.1109%2FITOEC.2018.8740440&rft.externalDocID=8740440