BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization

Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC) S. 592 - 597
Hauptverfasser: Yang, Mengjie, Geng, Yushui, Yu, Kun, Li, Xuemei, Zhang, Shudong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2018
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wireless sensor networks (WSN) are currently the subject of scientific research in the world. With the wireless sensor network, it can collect the changes of various monitoring targets to meet the objective requirements of data transmission, signal analysis and signal processing. In order to improve the energy efficiency of the wireless sensor network and prolong the network lifetime, this paper uses fuzzy control to update the particle position in the algorithm, and proposes a BP Neural Network Data Fusion algorithm optimized based on adaptive fuzzy particle swarm optimization(AFPSOBP) algorithm. The simulation results show that compared with BP Neural Network Data Fusion algorithm optimized by Genetic algorithm and Particle Swarm (GAPSOBP), it can further reduce network traffic, save node energy and prolong network lifetime.
DOI:10.1109/ITOEC.2018.8740440