Node placement optimization for distributed sensor network using adaptive genetic algorithm
Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and tracking). In this paper, the averaged Cramer-Rao Lower Bound (CRLB) of TDOA-based sensor network localization system is derived at first in...
Saved in:
| Published in: | 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) pp. 1 - 4 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.08.2016
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and tracking). In this paper, the averaged Cramer-Rao Lower Bound (CRLB) of TDOA-based sensor network localization system is derived at first in a more practical scenario where the variance of the Time Of Arrival (TOA) estimate error of each sensor node is proportional to the square of its distance from the source. An adaptive genetic algorithm is then designed and applied to the optimal sensor placement process. A series of simulations are carried out to verify and demonstrate the performance of the proposed method when there is a sound source and 5, 10, 18 and 45 sensor nodes in a square test region, respectively. The simulation results show that the proposed adaptive genetic algorithm works successfully and the obtained optimal sensor placement emerges as an even distribution. |
|---|---|
| AbstractList | Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and tracking). In this paper, the averaged Cramer-Rao Lower Bound (CRLB) of TDOA-based sensor network localization system is derived at first in a more practical scenario where the variance of the Time Of Arrival (TOA) estimate error of each sensor node is proportional to the square of its distance from the source. An adaptive genetic algorithm is then designed and applied to the optimal sensor placement process. A series of simulations are carried out to verify and demonstrate the performance of the proposed method when there is a sound source and 5, 10, 18 and 45 sensor nodes in a square test region, respectively. The simulation results show that the proposed adaptive genetic algorithm works successfully and the obtained optimal sensor placement emerges as an even distribution. |
| Author | Chen Jianfeng Yan Qingli |
| Author_xml | – sequence: 1 surname: Yan Qingli fullname: Yan Qingli email: gongchyy@163.com organization: Sch. of Marine Sci. & Technol., Northwestern Polytech. Univ., Xi'an, China – sequence: 2 surname: Chen Jianfeng fullname: Chen Jianfeng organization: Sch. of Marine Sci. & Technol., Northwestern Polytech. Univ., Xi'an, China |
| BookMark | eNotj81KxDAYRSPoQsd5gtnkBVqTpmmSpRR_BgYVnJ2LIWm-1GCblDSj6NNbmFlduIdz4d6gyxADILShpKSUqLtt-_7WtmVFaFMKwVmjqgu0VkJSThSpBJHyGn28RAt4GnQHI4SM45T96P909jFgFxO2fs7Jm2MGi2cI81IFyD8xfeHj7EOPtdWL8w24hwX4Duuhj8nnz_EWXTk9zLA-5wrtHx_27XOxe33atve7wiuSC-ZqYYixyhhHK2pkLZWuuo4QLWvVOL4ADR13TDuluGS25lyIhtlGageOrdDmNOsB4DAlP-r0ezg_Zv_GYlMO |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSPCC.2016.7753692 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISBN | 9781509027088 1509027084 |
| EndPage | 4 |
| ExternalDocumentID | 7753692 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-3f47b0bd9bbf121b8489a2cc00a8496f59bbaec5f3af99583d4557763d68afef3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:03 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-3f47b0bd9bbf121b8489a2cc00a8496f59bbaec5f3af99583d4557763d68afef3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_7753692 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Aug. |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) |
| PublicationTitleAbbrev | ICSPCC |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6142983 |
| Snippet | Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | adaptive genetic algorithm Convergence CRLB Genetic algorithms Optimization sensor placement Signal processing Simulation Sociology source localization Statistics Time of Arrival |
| Title | Node placement optimization for distributed sensor network using adaptive genetic algorithm |
| URI | https://ieeexplore.ieee.org/document/7753692 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNjJj038JgePdmubpE3OxaEgY-AOAw8jHy9z4FqZm3-_L22ZCF68haQk8NLk95L8fu8RcoeQ6xgYESme24hbm0QaZBz51IZnJERQXWctec4nEzmfq2mH3O-1MABQk89gGIr1W76r7C5clY1y9K0zhRvuQZ5njVarDSSUxGr0VLxMiyKwtbJh--WvlCk1YoyP_jfWMRn8SO_odA8qJ6QD5SnpBZewiajcJ6-TygGtuVShC1rhol-3akqKLih1IRZuSGMFjn7iKRWryobsTQPLfUm10x9hl6P48wQNI9Xvy2qz2r6tB2Q2fpgVj1GbIiFaqXgbMc9zExunjPFJmhjJpdKptXGsJVeZF9igwQrPtFdKSOa4EGg75jKpPXh2RrplVcI5oZ4ZSFNEd_R4uBdCSuV5Yg2TFs8UoC5IPxhp8dEEwVi09rn8u_qK9MI8NEy5a9LdbnZwQw7tFxprc1vP3DcHZJ69 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jCu7JyybezYOPduslaZPn4thwloF7GPgwcjmZA9eOuvn7TdoyEXzxraSlhZP2fCfN950PoQcLuToCST1OEuURpQJPAPM9Eyq3jWQRVFSuJZMky9h8zqct9LjXwgBART6Dvjus9vJ1oXbuV9kgsbV1zG3CPXDOWY1aq2klFPh8ME5fp2nq-Fpxv7n2l2lKhRnD4_897QT1fsR3eLqHlVPUgvwMdVxRWPdU7qK3rNCAKzaVuwUu7Ge_bvSU2BahWLtuuM7ICjT-tOtUO5TXdG_seO5LLLTYuDyH7evjVIxYfCyLcrV9X_fQbPg0S0deY5Lgrbi_9SJDEulLzaU0QRhIRhgXoVK-LxjhsaH2hABFTSQM55RFmlCa2KSiYyYMmOgctfMihwuETSQhDC2-25qHGEoZ44YESkZM2VUF8EvUdUFabOo2GIsmPld_D9-jo9HsZbKYjLPna9Rxc1Lz5m5Qe1vu4BYdqi8buPKumsVvdp-iBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Signal+Processing%2C+Communications+and+Computing+%28ICSPCC%29&rft.atitle=Node+placement+optimization+for+distributed+sensor+network+using+adaptive+genetic+algorithm&rft.au=Yan+Qingli&rft.au=Chen+Jianfeng&rft.date=2016-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICSPCC.2016.7753692&rft.externalDocID=7753692 |