Node placement optimization for distributed sensor network using adaptive genetic algorithm

Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and tracking). In this paper, the averaged Cramer-Rao Lower Bound (CRLB) of TDOA-based sensor network localization system is derived at first in...

Full description

Saved in:
Bibliographic Details
Published in:2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) pp. 1 - 4
Main Authors: Yan Qingli, Chen Jianfeng
Format: Conference Proceeding
Language:English
Published: IEEE 01.08.2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and tracking). In this paper, the averaged Cramer-Rao Lower Bound (CRLB) of TDOA-based sensor network localization system is derived at first in a more practical scenario where the variance of the Time Of Arrival (TOA) estimate error of each sensor node is proportional to the square of its distance from the source. An adaptive genetic algorithm is then designed and applied to the optimal sensor placement process. A series of simulations are carried out to verify and demonstrate the performance of the proposed method when there is a sound source and 5, 10, 18 and 45 sensor nodes in a square test region, respectively. The simulation results show that the proposed adaptive genetic algorithm works successfully and the obtained optimal sensor placement emerges as an even distribution.
AbstractList Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and tracking). In this paper, the averaged Cramer-Rao Lower Bound (CRLB) of TDOA-based sensor network localization system is derived at first in a more practical scenario where the variance of the Time Of Arrival (TOA) estimate error of each sensor node is proportional to the square of its distance from the source. An adaptive genetic algorithm is then designed and applied to the optimal sensor placement process. A series of simulations are carried out to verify and demonstrate the performance of the proposed method when there is a sound source and 5, 10, 18 and 45 sensor nodes in a square test region, respectively. The simulation results show that the proposed adaptive genetic algorithm works successfully and the obtained optimal sensor placement emerges as an even distribution.
Author Chen Jianfeng
Yan Qingli
Author_xml – sequence: 1
  surname: Yan Qingli
  fullname: Yan Qingli
  email: gongchyy@163.com
  organization: Sch. of Marine Sci. & Technol., Northwestern Polytech. Univ., Xi'an, China
– sequence: 2
  surname: Chen Jianfeng
  fullname: Chen Jianfeng
  organization: Sch. of Marine Sci. & Technol., Northwestern Polytech. Univ., Xi'an, China
BookMark eNotj81KxDAYRSPoQsd5gtnkBVqTpmmSpRR_BgYVnJ2LIWm-1GCblDSj6NNbmFlduIdz4d6gyxADILShpKSUqLtt-_7WtmVFaFMKwVmjqgu0VkJSThSpBJHyGn28RAt4GnQHI4SM45T96P909jFgFxO2fs7Jm2MGi2cI81IFyD8xfeHj7EOPtdWL8w24hwX4Duuhj8nnz_EWXTk9zLA-5wrtHx_27XOxe33atve7wiuSC-ZqYYixyhhHK2pkLZWuuo4QLWvVOL4ADR13TDuluGS25lyIhtlGageOrdDmNOsB4DAlP-r0ezg_Zv_GYlMO
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSPCC.2016.7753692
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 9781509027088
1509027084
EndPage 4
ExternalDocumentID 7753692
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-3f47b0bd9bbf121b8489a2cc00a8496f59bbaec5f3af99583d4557763d68afef3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:03 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3f47b0bd9bbf121b8489a2cc00a8496f59bbaec5f3af99583d4557763d68afef3
PageCount 4
ParticipantIDs ieee_primary_7753692
PublicationCentury 2000
PublicationDate 2016-Aug.
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)
PublicationTitleAbbrev ICSPCC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6142983
Snippet Sensor placement is an important issue for distributed sensor network design, especially when it is used for collaborative tasks (e.g., source localization and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms adaptive genetic algorithm
Convergence
CRLB
Genetic algorithms
Optimization
sensor placement
Signal processing
Simulation
Sociology
source localization
Statistics
Time of Arrival
Title Node placement optimization for distributed sensor network using adaptive genetic algorithm
URI https://ieeexplore.ieee.org/document/7753692
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zeNjJj038JgePdmubpE3OxaEgY-AOAw8jHy9z4FqZm3-_L22ZCF68haQk8NLk95L8fu8RcoeQ6xgYESme24hbm0QaZBz51IZnJERQXWctec4nEzmfq2mH3O-1MABQk89gGIr1W76r7C5clY1y9K0zhRvuQZ5njVarDSSUxGr0VLxMiyKwtbJh--WvlCk1YoyP_jfWMRn8SO_odA8qJ6QD5SnpBZewiajcJ6-TygGtuVShC1rhol-3akqKLih1IRZuSGMFjn7iKRWryobsTQPLfUm10x9hl6P48wQNI9Xvy2qz2r6tB2Q2fpgVj1GbIiFaqXgbMc9zExunjPFJmhjJpdKptXGsJVeZF9igwQrPtFdKSOa4EGg75jKpPXh2RrplVcI5oZ4ZSFNEd_R4uBdCSuV5Yg2TFs8UoC5IPxhp8dEEwVi09rn8u_qK9MI8NEy5a9LdbnZwQw7tFxprc1vP3DcHZJ69
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5jCu7JyybezYOPduslaZPn4thwloF7GPgwcjmZA9eOuvn7TdoyEXzxraSlhZP2fCfN950PoQcLuToCST1OEuURpQJPAPM9Eyq3jWQRVFSuJZMky9h8zqct9LjXwgBART6Dvjus9vJ1oXbuV9kgsbV1zG3CPXDOWY1aq2klFPh8ME5fp2nq-Fpxv7n2l2lKhRnD4_897QT1fsR3eLqHlVPUgvwMdVxRWPdU7qK3rNCAKzaVuwUu7Ge_bvSU2BahWLtuuM7ICjT-tOtUO5TXdG_seO5LLLTYuDyH7evjVIxYfCyLcrV9X_fQbPg0S0deY5Lgrbi_9SJDEulLzaU0QRhIRhgXoVK-LxjhsaH2hABFTSQM55RFmlCa2KSiYyYMmOgctfMihwuETSQhDC2-25qHGEoZ44YESkZM2VUF8EvUdUFabOo2GIsmPld_D9-jo9HsZbKYjLPna9Rxc1Lz5m5Qe1vu4BYdqi8buPKumsVvdp-iBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Signal+Processing%2C+Communications+and+Computing+%28ICSPCC%29&rft.atitle=Node+placement+optimization+for+distributed+sensor+network+using+adaptive+genetic+algorithm&rft.au=Yan+Qingli&rft.au=Chen+Jianfeng&rft.date=2016-08-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICSPCC.2016.7753692&rft.externalDocID=7753692