P-Tree programming
We propose a novel method for automatic program synthesis. P-Tree Programming represents the program search space through a single probabilistic prototype tree. From this prototype tree we form program instances which we evaluate on a given problem. The error values from the evaluations are propagat...
Saved in:
| Published in: | SSCI : 2017 IEEE Symposium Series on Computational Intelligence : November 27, 2017-December 1, 2017 pp. 1 - 7 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.11.2017
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We propose a novel method for automatic program synthesis. P-Tree Programming represents the program search space through a single probabilistic prototype tree. From this prototype tree we form program instances which we evaluate on a given problem. The error values from the evaluations are propagated through the prototype tree. We use them to update the probability distributions that determine the symbol choices of further instances. The iterative method is applied to several symbolic regression benchmarks from the literature. It outperforms standard Genetic Programming to a large extent. Furthermore, it relies on a concise set of parameters which are held constant for all problems. The algorithm can be employed for most of the typical computational intelligence tasks such as classification, automatic program induction, and symbolic regression. |
|---|---|
| AbstractList | We propose a novel method for automatic program synthesis. P-Tree Programming represents the program search space through a single probabilistic prototype tree. From this prototype tree we form program instances which we evaluate on a given problem. The error values from the evaluations are propagated through the prototype tree. We use them to update the probability distributions that determine the symbol choices of further instances. The iterative method is applied to several symbolic regression benchmarks from the literature. It outperforms standard Genetic Programming to a large extent. Furthermore, it relies on a concise set of parameters which are held constant for all problems. The algorithm can be employed for most of the typical computational intelligence tasks such as classification, automatic program induction, and symbolic regression. |
| Author | Oesch, Christian |
| Author_xml | – sequence: 1 givenname: Christian surname: Oesch fullname: Oesch, Christian organization: University of Basel, Switzerland |
| BookMark | eNotjk1Lw0AQQKegoK29eBMv_oHE2Y9MZo8laC0UFJp72ezOlhSTlk0v_nsFe3q3994cbsbTKABPCkul0L3uds2m1KjqkjUjWzeDuaoMk6412TtYTtMREZUjtrW5h8evos0iL-d8OmQ_DP14eIDb5L8nWV65gPb9rW0-iu3netOstkXv8FKYaChUZJ2y5DhYoc5Vxv5FU-Sg0cSYKHQqsU_edxQ8cpKOmLyWKkWzgOd_bS8i-3PuB59_9tdr8wtckjis |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SSCI.2017.8280849 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Computer Science |
| EISBN | 1538627264 9781538627266 |
| EndPage | 7 |
| ExternalDocumentID | 8280849 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-3d36c564914698c4e6b9534280fd8c203ddf6cb1f8afaab6ca08feb686a2e5fd3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:51:28 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-3d36c564914698c4e6b9534280fd8c203ddf6cb1f8afaab6ca08feb686a2e5fd3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_8280849 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Nov. |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | SSCI : 2017 IEEE Symposium Series on Computational Intelligence : November 27, 2017-December 1, 2017 |
| PublicationTitleAbbrev | SSCI |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0001968473 |
| Score | 1.6441263 |
| Snippet | We propose a novel method for automatic program synthesis. P-Tree Programming represents the program search space through a single probabilistic prototype... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Benchmark testing Open area test sites Probability distribution Programming Prototypes Sociology Statistics |
| Title | P-Tree programming |
| URI | https://ieeexplore.ieee.org/document/8280849 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0CFTmkfpGw8dq0S2ZD3m0NAuwZAM2YIsnaBDk2KS_v5KtptQ6NJNCA5xJ6R73wfwhNI4z6UkFG1GuHGCaJcjUdxpZlmpc-Q12IRcLtVmo4sOPJ96YRCxLj7DaVzWuXy3t8cYKpsF74AqrrvQlVI0vVrneIoW4aNlbeIypXq2Ws3fYu2WnLZ0vwBUav2xGPzv5EuYnBvxkuKkYobQwd0IBj9IDEn7MEfQjzZjM3J5DMOCrCvEpC29-giUE1gvXtbzV9JCH5B3TQ-EOSZsLrhOI8Cj5SiC0FjwFKh3ymaUOeeFLVOvjDemFNZQ5bEUSpgMc-_YFfR2-x1eQ5J5FnW4Qx8sH4HUlKV23koTZWQZu4FxZHf72Qy32Lac3v69fQf9KNGmGe8eeofqiA9wYb8Cj9VjfSPfbNKMjw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6sLdST9VH67h56bDRustnkLBWlVgT34E2yyQR6qBbR_v4mu1ul0EtvITCEmZDMez6AJ0y1dTxNCUUTE66tIMomSCS3ihmWqwR5ATaRzmZyuVTzGjwfemEQsSg-w15YFrl8uzH7ECrre--ASq5O4DThPKZlt9YxoqKE_2pZlbocUNVfLIaTUL2V9irKXxAqhQYZNf939gV0j6140fygZFpQw3Ubmj9YDFH1NNvQCFZjOXS5A605ybaIUVV89eEpu5CNXrLhmFTgB-Rd0R1hlgmTCK4GAeLRcBRebMz7CtRZaWLKrHXC5AMntdM6F0ZT6TAXUugYE2fZJdTXmzVeQRQ7FrS4RedtH4FU57myzqQ6yMgwdg2dwO7qsxxvsao4vfl7-xHOx9nbdDWdzF5voRGkW7bm3UF9t93jPZyZL8_v9qG4nW_xLY_W |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SSCI+%3A+2017+IEEE+Symposium+Series+on+Computational+Intelligence+%3A+November+27%2C+2017-December+1%2C+2017&rft.atitle=P-Tree+programming&rft.au=Oesch%2C+Christian&rft.date=2017-11-01&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FSSCI.2017.8280849&rft.externalDocID=8280849 |