Elephant search algorithm on data clustering

Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) s. 787 - 793
Hlavní autori: Zhonghuan Tian, Fong, Simon, Wong, Raymond, Millham, Richard
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2016
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts with some random partitions at the beginning, and it tries to improve the partitions progressively. Different initial partitions can result in different final clusters. Trying through all the possible candidate clusters for the perfect result is too time consuming. Meta-heuristic algorithm aims to search for global optimum in high-dimensional problems. Meta-heuristic algorithm has been successfully implemented on data clustering problems seeking a near optimal solution in terms of quality of the resultant clusters. In this paper, a new metaheuristic search method called Elephant Search Algorithm (ESA) is proposed to integrate into K-means, forming a new data clustering algorithm, namely C-ESA. The advantage of ESA is its dual features of (i) evolutionary operations and (ii) balance of local intensification and global exploration. The results by C-ESA are compared with classical clustering algorithms including K-means, DBSCAN, and GMM-EM. C-ESA is shown to outperform the other algorithms in terms of clustering accuracy via a computer simulation.
AbstractList Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts with some random partitions at the beginning, and it tries to improve the partitions progressively. Different initial partitions can result in different final clusters. Trying through all the possible candidate clusters for the perfect result is too time consuming. Meta-heuristic algorithm aims to search for global optimum in high-dimensional problems. Meta-heuristic algorithm has been successfully implemented on data clustering problems seeking a near optimal solution in terms of quality of the resultant clusters. In this paper, a new metaheuristic search method called Elephant Search Algorithm (ESA) is proposed to integrate into K-means, forming a new data clustering algorithm, namely C-ESA. The advantage of ESA is its dual features of (i) evolutionary operations and (ii) balance of local intensification and global exploration. The results by C-ESA are compared with classical clustering algorithms including K-means, DBSCAN, and GMM-EM. C-ESA is shown to outperform the other algorithms in terms of clustering accuracy via a computer simulation.
Author Zhonghuan Tian
Fong, Simon
Wong, Raymond
Millham, Richard
Author_xml – sequence: 1
  surname: Zhonghuan Tian
  fullname: Zhonghuan Tian
  email: mb45440@umac.mo
  organization: Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China
– sequence: 2
  givenname: Simon
  surname: Fong
  fullname: Fong, Simon
  email: ccfong@umac.mo
  organization: Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China
– sequence: 3
  givenname: Raymond
  surname: Wong
  fullname: Wong, Raymond
  email: wong@cse.unsw.edu.au
  organization: Sch. of Comput. Sci. & Eng., Univ. of New South Wales, Sydney, NSW, Australia
– sequence: 4
  givenname: Richard
  surname: Millham
  fullname: Millham, Richard
  email: richardm1@dut.ac.za
  organization: ICT & Soc. Res. Group, Durban Univ. of Technol., Durban, South Africa
BookMark eNotjstOAjEUQGuiC0E_wLjpBzjj7buzNAhqJGEBe3JTbpkmQ4d06sK_l0TO5uxOzozd5jETY08CWiGge11tv99bCcK2zoKSzt6wmTDQgYZOmXv2shzo3GOufCIsoec4HMeSan_iY-YHrMjD8DNVKikfH9hdxGGix6vnbLda7hafzXrz8bV4Wzepg9qo4A5GIEUkQdJLHRSSuSDIenTe6IjORJLWg75cCW-kxgg-oCBnUc3Z8382EdH-XNIJy-_--q_-AOP0PjI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/FSKD.2016.7603276
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 1509040935
9781509040933
EndPage 793
ExternalDocumentID 7603276
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-3c7d51aefae1e2824c3ae55551e68a7854fa75fe2680476018524af08ca1e76a3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:54 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3c7d51aefae1e2824c3ae55551e68a7854fa75fe2680476018524af08ca1e76a3
PageCount 7
ParticipantIDs ieee_primary_7603276
PublicationCentury 2000
PublicationDate 2016-Aug.
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-Aug.
PublicationDecade 2010
PublicationTitle 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
PublicationTitleAbbrev FSKD
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6352592
Snippet Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means,...
SourceID ieee
SourceType Publisher
StartPage 787
SubjectTerms Algorithm design and analysis
Classification algorithms
Clustering algorithms
data clustering
Electronic mail
elephant search algorithm
Heuristic algorithms
meta-heuristic
Partitioning algorithms
Statistics
Title Elephant search algorithm on data clustering
URI https://ieeexplore.ieee.org/document/7603276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UevDUh5a-yaFHo_vMZM-tUiiIUA_eZDY7WwvbXRHt72-yu1gKvTSnEELC5EFmMt83A_AYGcqsopHJkFMl7QnJJUWIUrFWSZaz41LWySZwPterVbLowOjIhWHmGnzGY1etfflZZQ7uq2yCygsDVF3oIqqGq9U6Kn0vmczeXp8dVkuN236_EqbU78Xs9H8zncHwh3gnFscn5Rw6XF5A3ymETTzlAYymBW83djlEc0YFFe-VNfA3n6IqhcN7ClMcXPQDO8AQlrPp8ulFthkP5Efi7WVoMIt94pzYZ2sLRSYkjm3xWWlCHUc5YZxzoLQXOTCLjoOIck8b8hkVhZfQK6uSr0AgGaWzNE3DFO1-eESxRns9kawtrBN1DQMn9XrbxLRYtwLf_N18C323sA3w7Q56-92B7-HEfFnpdw_1RnwDcSCLRQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwED-cG8ynfejY9_KwR6OtbZP0ebM4dEWYD77JNb3OgWtFdH__krY4BntZnkIICblLSC73u_sBPPoaU_PQSLlHieBmh2QcfSm5ICXCNCMbS1mSTcg4VvN5OG1Adx8LQ0Ql-Ix6tlr68tNC7-xXWV8KxxtIcQCHljmrjtaqXZWuE_ajt_GzRWuJXt3zF2VKeWNEJ_-b6xQ6P6F3bLq_VM6gQfk5tOyTsMqo3IbucEXrpREIq3Ypw9V7YUz85ScrcmYRn0yvdjb_gRmgA7NoOHsa8ZrzgH-EzpZ7WqaBi5QhuWSsIV97SIEpLgmFUgV-hjLIaCCU41s4iwoGPmaO0uiSFOhdQDMvcroEJlELlSZJ4iXSaMRBDJQ0B1SisYZVKK6gbVe9WFdZLRb1gq__bn6A49HsdbKYvMTjG2hZIVcwuFtobjc7uoMj_WUksbkvlfIN5PWOjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+12th+International+Conference+on+Natural+Computation%2C+Fuzzy+Systems+and+Knowledge+Discovery+%28ICNC-FSKD%29&rft.atitle=Elephant+search+algorithm+on+data+clustering&rft.au=Zhonghuan+Tian&rft.au=Fong%2C+Simon&rft.au=Wong%2C+Raymond&rft.au=Millham%2C+Richard&rft.date=2016-08-01&rft.pub=IEEE&rft.spage=787&rft.epage=793&rft_id=info:doi/10.1109%2FFSKD.2016.7603276&rft.externalDocID=7603276