Elephant search algorithm on data clustering
Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts...
Uložené v:
| Vydané v: | 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) s. 787 - 793 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.08.2016
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts with some random partitions at the beginning, and it tries to improve the partitions progressively. Different initial partitions can result in different final clusters. Trying through all the possible candidate clusters for the perfect result is too time consuming. Meta-heuristic algorithm aims to search for global optimum in high-dimensional problems. Meta-heuristic algorithm has been successfully implemented on data clustering problems seeking a near optimal solution in terms of quality of the resultant clusters. In this paper, a new metaheuristic search method called Elephant Search Algorithm (ESA) is proposed to integrate into K-means, forming a new data clustering algorithm, namely C-ESA. The advantage of ESA is its dual features of (i) evolutionary operations and (ii) balance of local intensification and global exploration. The results by C-ESA are compared with classical clustering algorithms including K-means, DBSCAN, and GMM-EM. C-ESA is shown to outperform the other algorithms in terms of clustering accuracy via a computer simulation. |
|---|---|
| AbstractList | Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts with some random partitions at the beginning, and it tries to improve the partitions progressively. Different initial partitions can result in different final clusters. Trying through all the possible candidate clusters for the perfect result is too time consuming. Meta-heuristic algorithm aims to search for global optimum in high-dimensional problems. Meta-heuristic algorithm has been successfully implemented on data clustering problems seeking a near optimal solution in terms of quality of the resultant clusters. In this paper, a new metaheuristic search method called Elephant Search Algorithm (ESA) is proposed to integrate into K-means, forming a new data clustering algorithm, namely C-ESA. The advantage of ESA is its dual features of (i) evolutionary operations and (ii) balance of local intensification and global exploration. The results by C-ESA are compared with classical clustering algorithms including K-means, DBSCAN, and GMM-EM. C-ESA is shown to outperform the other algorithms in terms of clustering accuracy via a computer simulation. |
| Author | Zhonghuan Tian Fong, Simon Wong, Raymond Millham, Richard |
| Author_xml | – sequence: 1 surname: Zhonghuan Tian fullname: Zhonghuan Tian email: mb45440@umac.mo organization: Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China – sequence: 2 givenname: Simon surname: Fong fullname: Fong, Simon email: ccfong@umac.mo organization: Dept. of Comput. & Inf. Sci., Univ. of Macau, Macau, China – sequence: 3 givenname: Raymond surname: Wong fullname: Wong, Raymond email: wong@cse.unsw.edu.au organization: Sch. of Comput. Sci. & Eng., Univ. of New South Wales, Sydney, NSW, Australia – sequence: 4 givenname: Richard surname: Millham fullname: Millham, Richard email: richardm1@dut.ac.za organization: ICT & Soc. Res. Group, Durban Univ. of Technol., Durban, South Africa |
| BookMark | eNotjstOAjEUQGuiC0E_wLjpBzjj7buzNAhqJGEBe3JTbpkmQ4d06sK_l0TO5uxOzozd5jETY08CWiGge11tv99bCcK2zoKSzt6wmTDQgYZOmXv2shzo3GOufCIsoec4HMeSan_iY-YHrMjD8DNVKikfH9hdxGGix6vnbLda7hafzXrz8bV4Wzepg9qo4A5GIEUkQdJLHRSSuSDIenTe6IjORJLWg75cCW-kxgg-oCBnUc3Z8382EdH-XNIJy-_--q_-AOP0PjI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/FSKD.2016.7603276 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISBN | 1509040935 9781509040933 |
| EndPage | 793 |
| ExternalDocumentID | 7603276 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-3c7d51aefae1e2824c3ae55551e68a7854fa75fe2680476018524af08ca1e76a3 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:54 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-3c7d51aefae1e2824c3ae55551e68a7854fa75fe2680476018524af08ca1e76a3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_7603276 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Aug. |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD) |
| PublicationTitleAbbrev | FSKD |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6352592 |
| Snippet | Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 787 |
| SubjectTerms | Algorithm design and analysis Classification algorithms Clustering algorithms data clustering Electronic mail elephant search algorithm Heuristic algorithms meta-heuristic Partitioning algorithms Statistics |
| Title | Elephant search algorithm on data clustering |
| URI | https://ieeexplore.ieee.org/document/7603276 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB5UevDUh5a-yaFHo_vMZM-tUiiIUA_eZDY7WwvbXRHt72-yu1gKvTSnEELC5EFmMt83A_AYGcqsopHJkFMl7QnJJUWIUrFWSZaz41LWySZwPterVbLowOjIhWHmGnzGY1etfflZZQ7uq2yCygsDVF3oIqqGq9U6Kn0vmczeXp8dVkuN236_EqbU78Xs9H8zncHwh3gnFscn5Rw6XF5A3ymETTzlAYymBW83djlEc0YFFe-VNfA3n6IqhcN7ClMcXPQDO8AQlrPp8ulFthkP5Efi7WVoMIt94pzYZ2sLRSYkjm3xWWlCHUc5YZxzoLQXOTCLjoOIck8b8hkVhZfQK6uSr0AgGaWzNE3DFO1-eESxRns9kawtrBN1DQMn9XrbxLRYtwLf_N18C323sA3w7Q56-92B7-HEfFnpdw_1RnwDcSCLRQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwED-cG8ynfejY9_KwR6OtbZP0ebM4dEWYD77JNb3OgWtFdH__krY4BntZnkIICblLSC73u_sBPPoaU_PQSLlHieBmh2QcfSm5ICXCNCMbS1mSTcg4VvN5OG1Adx8LQ0Ql-Ix6tlr68tNC7-xXWV8KxxtIcQCHljmrjtaqXZWuE_ajt_GzRWuJXt3zF2VKeWNEJ_-b6xQ6P6F3bLq_VM6gQfk5tOyTsMqo3IbucEXrpREIq3Ypw9V7YUz85ScrcmYRn0yvdjb_gRmgA7NoOHsa8ZrzgH-EzpZ7WqaBi5QhuWSsIV97SIEpLgmFUgV-hjLIaCCU41s4iwoGPmaO0uiSFOhdQDMvcroEJlELlSZJ4iXSaMRBDJQ0B1SisYZVKK6gbVe9WFdZLRb1gq__bn6A49HsdbKYvMTjG2hZIVcwuFtobjc7uoMj_WUksbkvlfIN5PWOjg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+12th+International+Conference+on+Natural+Computation%2C+Fuzzy+Systems+and+Knowledge+Discovery+%28ICNC-FSKD%29&rft.atitle=Elephant+search+algorithm+on+data+clustering&rft.au=Zhonghuan+Tian&rft.au=Fong%2C+Simon&rft.au=Wong%2C+Raymond&rft.au=Millham%2C+Richard&rft.date=2016-08-01&rft.pub=IEEE&rft.spage=787&rft.epage=793&rft_id=info:doi/10.1109%2FFSKD.2016.7603276&rft.externalDocID=7603276 |