Parallel Modified Artificial Bee Colony Algorithm for Solving Conditional Nonlinear Optimal Perturbation

Intelligent algorithms have been applied to solving conditional nonlinear optimal perturbation (CNOP), which plays an important role in the study of weather and climate predictability. Single particle intelligent optimization algorithms can get similar CNOP to adjoint method, and show higher time ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS) S. 333 - 340
Hauptverfasser: Juhui Ren, Shijin Yuan, Bin Mu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2016
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Intelligent algorithms have been applied to solving conditional nonlinear optimal perturbation (CNOP), which plays an important role in the study of weather and climate predictability. Single particle intelligent optimization algorithms can get similar CNOP to adjoint method, and show higher time efficiency in solving CNOP. However, swarm intelligent optimization algorithms can only get similar CNOP, and still show lower time efficiency than adjoint method. In this paper, we proposed a modified artificial bee colony algorithm (MABC) to solve CNOP, and to accelerate the computation speed, we parallelize the MABC algorithm with MPI technology. In order to demonstrate its validity and efficiency, we apply MABC algorithm to solving CNOP in Zebiak-Cane model, which is a medium-complexity numerical model. The results obtained are compared with those from standard bee colony algorithm (ABC) algorithm, generic algorithm (GA) and adjoint method which is the benchmark. The MABC algorithm can get better results than the standard ABC and GA algorithm in solving CNOP, and can obtain similar results with adjoint method in CNOP magnitude and pattern aspects. The parallel MABC with MPI also shows a higher efficiency than adjoint method. All the experimental results show that it is feasible and efficient to solve CNOP with the proposed parallel modified artificial bee colony algorithm.
AbstractList Intelligent algorithms have been applied to solving conditional nonlinear optimal perturbation (CNOP), which plays an important role in the study of weather and climate predictability. Single particle intelligent optimization algorithms can get similar CNOP to adjoint method, and show higher time efficiency in solving CNOP. However, swarm intelligent optimization algorithms can only get similar CNOP, and still show lower time efficiency than adjoint method. In this paper, we proposed a modified artificial bee colony algorithm (MABC) to solve CNOP, and to accelerate the computation speed, we parallelize the MABC algorithm with MPI technology. In order to demonstrate its validity and efficiency, we apply MABC algorithm to solving CNOP in Zebiak-Cane model, which is a medium-complexity numerical model. The results obtained are compared with those from standard bee colony algorithm (ABC) algorithm, generic algorithm (GA) and adjoint method which is the benchmark. The MABC algorithm can get better results than the standard ABC and GA algorithm in solving CNOP, and can obtain similar results with adjoint method in CNOP magnitude and pattern aspects. The parallel MABC with MPI also shows a higher efficiency than adjoint method. All the experimental results show that it is feasible and efficient to solve CNOP with the proposed parallel modified artificial bee colony algorithm.
Author Juhui Ren
Shijin Yuan
Bin Mu
Author_xml – sequence: 1
  surname: Juhui Ren
  fullname: Juhui Ren
  email: legna868@163.com
  organization: Sch. of Software Eng., Tongji Univ., Shanghai, China
– sequence: 2
  surname: Shijin Yuan
  fullname: Shijin Yuan
  email: yuanshijin2003@163.com
  organization: Sch. of Software Eng., Tongji Univ., Shanghai, China
– sequence: 3
  surname: Bin Mu
  fullname: Bin Mu
  email: binmu@tongji.edu.cn
  organization: Sch. of Software Eng., Tongji Univ., Shanghai, China
BookMark eNotjj1PwzAYhI0EA5T-AhYPrAl2HDvxWMJHkQqNlO6VP960lly7MgYp_54gmO509-h0N-gyxAAI3VNSUkrkw7rvumI4qZQ7l6fiaRjKilBREsL5BVrKpqWcSFJXsuHX6NirpLwHj9-jdaMDi1cpz8Y45fEjAO6ij2HCK3-IyeXjCY8x4SH6bxcOcxmsyy6GGf6IwbsAKuHtObvTnPSQ8lfS6he4RVej8p-w_NcF2r0877p1sdm-vnWrTeEkyQXTQjDDNFGkBsa1AssNo9VIVStrS4TRvLJMmLpWRFsKRjdUGKWE5YwYYAt09zfrAGB_TvOPNO2btmqZFOwH2jNadw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/HPCC-SmartCity-DSS.2016.0055
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509042975
1509042970
EndPage 340
ExternalDocumentID 7828396
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-3b663c3b0a04e35baed5c312f1a894d06cb52d36c44a0bd1ecb716caa6d530ce3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:45 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-3b663c3b0a04e35baed5c312f1a894d06cb52d36c44a0bd1ecb716caa6d530ce3
PageCount 8
ParticipantIDs ieee_primary_7828396
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS)
PublicationTitleAbbrev HPCC
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.682816
Snippet Intelligent algorithms have been applied to solving conditional nonlinear optimal perturbation (CNOP), which plays an important role in the study of weather...
SourceID ieee
SourceType Publisher
StartPage 333
SubjectTerms Algorithm design and analysis
artificial bee colony algorithm
Atmospheric modeling
CNOP
Genetic algorithms
Mathematical model
MPI
Numerical models
Optimization
Prediction algorithms
Zebiak-Cane model
Title Parallel Modified Artificial Bee Colony Algorithm for Solving Conditional Nonlinear Optimal Perturbation
URI https://ieeexplore.ieee.org/document/7828396
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG6AGONJDRjf6YGjK13a7bJHXCVcxE2WAzfSx6yQAGtWMPHfO-0S9eDFS9O0hyYzzXzzHkK6sYAkMgYCyXARBS5qoMJAqcSIgiUQgvbDJuLJZDCbJVmD3H3XwgCATz6De7f1sXxbmp1zlfUQzRDPZZM041jWtVqHpLtvm9kbZ2ka5GukeIoKbPCY5y5zy8UaXB3fr9kpHjpGx_979IR0fmrwaPaNLqekAZs2WWSqcsNPVvS5tMsC1Uc6rHy2D34j-gBAUxRmm086XL2WaPYv1hSVUpqXK-c3wEsXoPbOPzqpe2Soir6g1FjjSQYV4o_2rOqQ6ehpmo6D_ayEYJmwbcA1ag6Ga6aYAB5pBTYyPOwXoRokwjJpdNS3XBohFNM2BKPRUDJKSRtx5BI_I61NuYFzQk0cFTYuNNpxViSuG72RlkcyhtAokOyCtB2R5m91N4z5nj6Xfx9fkSPHhDoB5Jq0ttUObsiB-dgu36tbz8IvvoWjyg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4gGvWkBoxv98DRypZuW3rEKsEItUk5cCP7mAoJtKaCif_e2ZagBy9eNpvdwyYzm_nmPYS0fA6BqxRYHsOFp7iIrrAtIQLFUxaADbIcNuFHUXcyCeIaudvWwgBAmXwG92ZbxvJ1rtbGVdZGNEM893bIrst5h1XVWvuktWmc2R7EYWglS6R5iCqs9ZgkJnfLRBtMJd-v6SklePSP_vfsMWn-VOHReIsvJ6QGWYPMYlGY8ScLOsr1PEUFkvaKMt8HPxJ9AKAhirPsi_YWbzka_rMlRbWUJvnCeA7w0oSoS_cfjaouGaKgryg3lngSQ4EIJEtmNcm4_zQOB9ZmWoI1D9jKciTqDsqRTDAOjisFaFc5die1RTfgmnlKuh3teIpzwaS2QUk0lZQQnnYd5JNzSupZnsEZocp3U-2nEi05zQPTj1552nE9H2wlwGPnpGGINH2v-mFMN_S5-Pv4lhwMxqPhdPgcvVySQ8OQKh3kitRXxRquyZ76XM0_ipuSnd9s86cR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+18th+International+Conference+on+High+Performance+Computing+and+Communications%3B+IEEE+14th+International+Conference+on+Smart+City%3B+IEEE+2nd+International+Conference+on+Data+Science+and+Systems+%28HPCC%2FSmartCity%2FDSS%29&rft.atitle=Parallel+Modified+Artificial+Bee+Colony+Algorithm+for+Solving+Conditional+Nonlinear+Optimal+Perturbation&rft.au=Juhui+Ren&rft.au=Shijin+Yuan&rft.au=Bin+Mu&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=333&rft.epage=340&rft_id=info:doi/10.1109%2FHPCC-SmartCity-DSS.2016.0055&rft.externalDocID=7828396