State-space approximate dynamic programming for stochastic unit commitment

It is known that unit commitment problems with un certainties in power demands and the outputs of some generators can be represented as factored Markov decision process models. In this paper we propose a state space approximate dynamic programming algorithm to solve such models. The algorithm featur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 North American Power Symposium s. 1 - 7
Hlavní autoři: Weihong Zhang, Nikovski, Daniel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2011
Témata:
ISBN:9781457704178, 145770417X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is known that unit commitment problems with un certainties in power demands and the outputs of some generators can be represented as factored Markov decision process models. In this paper we propose a state space approximate dynamic programming algorithm to solve such models. The algorithm features a method to generate representative system configurations (states) and a functional metric to measure the similarity among system configurations. Experimental results show that the algorithm outperforms two deterministic approaches in resulting in both lower risks and operational costs, and that it can solve larger problems than a stochastic approach based on decision space approximate dynamic programming.
ISBN:9781457704178
145770417X
DOI:10.1109/NAPS.2011.6025113