GCD computation of n integers
Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.
Gespeichert in:
| Veröffentlicht in: | 2014 Recent Advances in Engineering and Computational Sciences (RAECS) S. 1 - 4 |
|---|---|
| 1. Verfasser: | |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.03.2014
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers. |
|---|---|
| DOI: | 10.1109/RAECS.2014.6799612 |