GCD computation of n integers
Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers.
Saved in:
| Published in: | 2014 Recent Advances in Engineering and Computational Sciences (RAECS) pp. 1 - 4 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.03.2014
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers. |
|---|---|
| AbstractList | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD computation of n integers. We extend the Euclid's algorithm and binary GCD algorithm to compute the GCD of more than two integers. |
| Author | Dwivedi, Shri Prakash |
| Author_xml | – sequence: 1 givenname: Shri Prakash surname: Dwivedi fullname: Dwivedi, Shri Prakash email: shriprakashdwivedi@gbpuat-tech.ac.in organization: Dept. of Inf. Technol., G.B. Pant Univ. of Agric. & Technol., Pantnagar, India |
| BookMark | eNotjs1qwkAURkewi6p9gZZCXiDx3rkxyV1K_AVBUPdyZzJTBnQiMV307Svo6jucxeEbqWFso1PqEyFDBJ4e5sv6mGnAPCtK5gL1QI0wf6DWDPCuvtf1IrHt9fbbSx_amLQ-iUmIvftx3X2i3rxc7u7jtWN1Wi1P9Sbd7dfber5LA0OfUoWNJs2mbIwjm7OY0j7ErKyEZlKIz42vQAAtNZq9WDBSsQeLZAskGquvZzY45863Llyl-zu_DtM_kxY41A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/RAECS.2014.6799612 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479922900 1479922919 9781479922901 9781479922918 |
| EndPage | 4 |
| ExternalDocumentID | 6799612 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-381d2329b7dbe3c49ab7c232578a35a6af4bf80a01c3d29fac0ba89f0c13c6133 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:27 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-381d2329b7dbe3c49ab7c232578a35a6af4bf80a01c3d29fac0ba89f0c13c6133 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6799612 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-March |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: 2014-March |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 Recent Advances in Engineering and Computational Sciences (RAECS) |
| PublicationTitleAbbrev | RAECS |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.540645 |
| Snippet | Greatest Common Divisor (GCD) computation is one of the most important operation of algorithmic number theory. In this paper we present the algorithms for GCD... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithm Algorithm design and analysis Computer Arithmetic Computers Educational institutions Electronic mail Equations GCD Computation Information technology Number Theory Random number generation |
| Title | GCD computation of n integers |
| URI | https://ieeexplore.ieee.org/document/6799612 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_Kjl4NG02yW6So6ytnkrRHnorSTaBXrZSt_5-k-xaEbx4C0MgzEB4j-TNPIB7aigV2kjsvDKY5zLD0riocCyYl5q6zFfJbELM53K1UosePBx6YZxzSXzmxnGZ_vKrrd3Hp7JJIQI7j5bCR0IUba_Wdx8MUZPXx2n5FsVafNxt_OWYkgBjdvq_o85g-NN5hxYHTDmHnqsHMHoun5BN9gupjmjrUY3SoIdA3oawnE2X5QvubA3wRpEGB4isAo1RRlTGMcuVNsKGQLg6muW60J4bL4kmmWUVVV5bYrRUntiM2QC-7AL69bZ2l4AC-6LWccO9IlzwXFGvM1NonutKiIxewSBmtn5vB1esu6Su_w7fwEksXiuwuoV-s9u7ERzbz2bzsbtL1f4CE9uBXw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH6MKehJZRN_TXvwaLc0TZvkKHVz4ixDe9htJGkCu7QyO_9-k6xOBC_ewiMQ3oPwfSTfex_ALZYYUyFZqA2XIUlYFDKpncIxjQ0TWEem9GYTNM_ZYsHnHbjb9cJorb34TA_d0v_ll7XauKeyUUotO3eWwnvOOavt1vruhEF89Ho_zt6cXIsM262_PFM8ZEyO_nfYMfR_eu-C-Q5VTqCjqx4MHrOHQHkDBl_JoDZBFfhRD5a-9aGYjItsGrbGBuGKoya0IFlaIsMlLaWOFeFCUmUD9vKIOBGpMEQahgSKVFxiboRCUjBukIpiZeE3PoVuVVf6DALLv7DSRBLDEaEk4diISKaCJKKkNMLn0HOZLd-3oyuWbVIXf4dv4GBavMyWs6f8-RIOXSG3cqsr6DbrjR7AvvpsVh_ra1_5Lwd7hKg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Recent+Advances+in+Engineering+and+Computational+Sciences+%28RAECS%29&rft.atitle=GCD+computation+of+n+integers&rft.au=Dwivedi%2C+Shri+Prakash&rft.date=2014-03-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FRAECS.2014.6799612&rft.externalDocID=6799612 |