Concurrent Optimization for Parameters of Powertrain and Control System of Hybrid Electric Vehicle Based on Multi-Objective Genetic Algorithms

The optimizing design of hybrid electric vehicle (HEV) aims at improving fuel economy and decreasing emissions subject to the satisfaction of its drivability. The concurrent optimization for main parameters of powertrain components and control system is the key to implement this objective. However,...

Full description

Saved in:
Bibliographic Details
Published in:2006 SICE-ICASE international joint conference : Busan, Korea, 18-21 October 2006 pp. 2424 - 2429
Main Authors: Li-Cun Fang, Shi-Yin Qin
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2006
Subjects:
ISBN:9788995003848, 8995003847
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The optimizing design of hybrid electric vehicle (HEV) aims at improving fuel economy and decreasing emissions subject to the satisfaction of its drivability. The concurrent optimization for main parameters of powertrain components and control system is the key to implement this objective. However, this problem is challenging due to the large amount of coupling design parameters, conflicting design objectives and nonlinear constraints. Thus, it is necessary to employ an effective strategy and algorithms to solve this problem. In this paper, an approach of optimization is developed based on the multi-objective genetic algorithms, which can realize the optimization to parameters of powertrain and control system simultaneously and find the Pareto-optimal solution set successfully subject to user-selectable performance constraints. This optimal parameter set provides a wide range of choices for the design, which can improve the fuel economy and reduce emissions without sacrificing vehicle performance. A case simulation is carried out and simulated by ADVISOR, the results demonstrate the effectiveness of the approach proposed in this paper
AbstractList The optimizing design of hybrid electric vehicle (HEV) aims at improving fuel economy and decreasing emissions subject to the satisfaction of its drivability. The concurrent optimization for main parameters of powertrain components and control system is the key to implement this objective. However, this problem is challenging due to the large amount of coupling design parameters, conflicting design objectives and nonlinear constraints. Thus, it is necessary to employ an effective strategy and algorithms to solve this problem. In this paper, an approach of optimization is developed based on the multi-objective genetic algorithms, which can realize the optimization to parameters of powertrain and control system simultaneously and find the Pareto-optimal solution set successfully subject to user-selectable performance constraints. This optimal parameter set provides a wide range of choices for the design, which can improve the fuel economy and reduce emissions without sacrificing vehicle performance. A case simulation is carried out and simulated by ADVISOR, the results demonstrate the effectiveness of the approach proposed in this paper
Author Shi-Yin Qin
Li-Cun Fang
Author_xml – sequence: 1
  surname: Li-Cun Fang
  fullname: Li-Cun Fang
  organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing
– sequence: 2
  surname: Shi-Yin Qin
  fullname: Shi-Yin Qin
  organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing
BookMark eNpVjMFKAzEYhCMqqLV3wUteYGuySXaTYy21LVRaaPFastk_NmU3Kdmo1IfwmV3Ri3MZBr75btCFDx4QuqNkRClRD5vFZDrKCSlGjApK-RkaqlJKpQQhTApx_m9zeYWGXXcgfZgqRM6v0dckePMWI_iEV8fkWvepkwse2xDxWkfdQoLY4WDxOnxATFE7j7WvcX9MMTR4c-oStD_A_FRFV-NpAyZFZ_AL7J1pAD_qDmrcO5_fmuSyVXXoAfcOeAYeUg-Om9cQXdq33S26tLrpYPjXA7R9mm4n82y5mi0m42XmFEkZ47bQJSkNFEYAt1WhqaFK5QWzJpeV1KWwPCdlpfJcaF4pxkRBLGGWkJoJNkD3v1oHALtjdK2Opx2nRBIu2TfLYmjP
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SICE.2006.315114
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9788995003855
8995003855
EndPage 2429
ExternalDocumentID 4108048
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-34f6a707ce6c5e4fb6a1c199263fc28b8a75f4207b9225a4b933560f03f00d353
IEDL.DBID RIE
ISBN 9788995003848
8995003847
IngestDate Wed Aug 27 02:13:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-34f6a707ce6c5e4fb6a1c199263fc28b8a75f4207b9225a4b933560f03f00d353
PageCount 6
ParticipantIDs ieee_primary_4108048
PublicationCentury 2000
PublicationDate 2006-Oct.
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-Oct.
PublicationDecade 2000
PublicationTitle 2006 SICE-ICASE international joint conference : Busan, Korea, 18-21 October 2006
PublicationTitleAbbrev SICE
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000396524
Score 1.4629471
Snippet The optimizing design of hybrid electric vehicle (HEV) aims at improving fuel economy and decreasing emissions subject to the satisfaction of its drivability....
SourceID ieee
SourceType Publisher
StartPage 2424
SubjectTerms Automatic control
Concurrent Optimization
Constraint optimization
Control systems
Design automation
Design optimization
Fuel economy
Genetic algorithms
Hybrid electric vehicle(HEV)
Hybrid electric vehicles
Mechanical power transmission
Multi-Objective genetic algorithms(MOGAs)
Optimization methods
Title Concurrent Optimization for Parameters of Powertrain and Control System of Hybrid Electric Vehicle Based on Multi-Objective Genetic Algorithms
URI https://ieeexplore.ieee.org/document/4108048
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA7b8KAXPzbxmxw8Wpc2adIcdWwoyFZwjN1G81FXca1sneCf8DebpLPu4MVbW0Io4eX9yPs8zwvAteKhZiaQeDQV2hQovvY4FtyjkkYYGacsnBLT5IkNh9F0yuMGuKm5MFprBz7Tt_bR9fJVIdf2qqxLLCCORE3QZIxWXK36PgVhTsPATnEyFURoG16EVQI79Xv006ZEvPv82OtXrQhsYp7l8GwNV3GxZbD_v786AJ1fkh6M6_BzCBo6PwJ7W_qCbfBllspKgAmOjG9YbEiX0GSqME4sLsuKa8IihbGdlubmRcAkV7BXIdhhJWhuFzx8Wm4X7LuxOZmEEz23JgfvTRhU0OzpqLzeSLxWLhRaQWtjlfDu7aVYZuV8seqA8aA_7j14mwEMXsZR6WGS0oQhJjWVoSapoIkvLVyV4lQGkYgSFqYkQExw4xUSIjjGJoFKEU4RUjjEx6CVF7k-AZDY3Iz7CdE4IQwpETA_ECFXoa9MjalOQdse7Oy9ktiYbc707O_P52DX3YQ4TN0FaJXLtb4EO_KjzFbLK2cX377vtr8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4QTdQXL2i82wcfnXRru66PSiAQEUgkhDeyXiYzAgaGiX_C32zb4eTBF9-2pVmW7uRcer7vOwDcKE41M4HECxOhTYHia49jwb1QhhFGxikLp8Q0aLNOJxoOea8EbgsujNbagc_0nb10vXw1k0t7VFYlFhBHog2wSQkJUM7WKk5UEOYhDewcJ1NDUNvyIiyX2Cnuo59GJeLV51atnjcjsIl6lsWzNl7FRZfG3v--ax8c_dL0YK8IQAegpKeHYHdNYbACvsxSmUswwa7xDpMV7RKaXBX2YovMsvKacJbAnp2X5iZGwHiqYC3HsMNc0twuaH5adhesu8E5qYQDPbZGBx9MIFTQvNOReb2ueM2dKLSS1sYu4f3by2yeZuPJ4gj0G_V-remtRjB4KUeZh0kSxgwxqUNJNUlEGPvSAlZDnMggElHMaGL-BBPc-IWYCI6xSaEShBOEFKb4GJSns6k-AZDY7Iz7MdE4JgwpETA_EJQr6itTZapTULEbO3rPRTZGqz09-_vxNdhu9p_ao3ar83gOdty5iEPYXYByNl_qS7AlP7J0Mb9yNvINbZ-6Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+SICE-ICASE+international+joint+conference+%3A+Busan%2C+Korea%2C+18-21+October+2006&rft.atitle=Concurrent+Optimization+for+Parameters+of+Powertrain+and+Control+System+of+Hybrid+Electric+Vehicle+Based+on+Multi-Objective+Genetic+Algorithms&rft.au=Li-Cun+Fang&rft.au=Shi-Yin+Qin&rft.date=2006-10-01&rft.pub=IEEE&rft.isbn=9788995003848&rft.spage=2424&rft.epage=2429&rft_id=info:doi/10.1109%2FSICE.2006.315114&rft.externalDocID=4108048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9788995003848/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9788995003848/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9788995003848/sc.gif&client=summon&freeimage=true