Very Short-Term Load Forecasting Based on Neural Network and Rough Set

The short-term load forecasting model based on neural network has been applied widely in energy management systems (EMS) because of its high forecasting accuracy and self-learning ability. But the forecasting errors of the load curve near peaks are large, especially at the large slope difference on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 International Conference on Intelligent Computation Technology and Automation Ročník 3; s. 1132 - 1135
Hlavní autoři: Pang Qingle, Zhang Min
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2010
Témata:
ISBN:9781424472796, 1424472792
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The short-term load forecasting model based on neural network has been applied widely in energy management systems (EMS) because of its high forecasting accuracy and self-learning ability. But the forecasting errors of the load curve near peaks are large, especially at the large slope difference on both side of a peak. So the load forecasting based on rough set and neural network is proposed. The load in the current time interval, load in the previous time interval, load deviation between the current time interval and the previous time interval and current time is regarded as an input of a neural network respectively. The forecasting load at following time interval is the output of the neural network. The trained neural network is the load forecasting model based on neural network. Then, the forecasting load at following time interval obtained by the neural network based load forecasting model is compensated by rough set to increase the forecasting accuracy. The simulation experiments show that the presented load forecasting based on rough set and neural network can improve the forecasting accuracy significantly.
AbstractList The short-term load forecasting model based on neural network has been applied widely in energy management systems (EMS) because of its high forecasting accuracy and self-learning ability. But the forecasting errors of the load curve near peaks are large, especially at the large slope difference on both side of a peak. So the load forecasting based on rough set and neural network is proposed. The load in the current time interval, load in the previous time interval, load deviation between the current time interval and the previous time interval and current time is regarded as an input of a neural network respectively. The forecasting load at following time interval is the output of the neural network. The trained neural network is the load forecasting model based on neural network. Then, the forecasting load at following time interval obtained by the neural network based load forecasting model is compensated by rough set to increase the forecasting accuracy. The simulation experiments show that the presented load forecasting based on rough set and neural network can improve the forecasting accuracy significantly.
Author Pang Qingle
Zhang Min
Author_xml – sequence: 1
  surname: Pang Qingle
  fullname: Pang Qingle
  email: stefam@163.com
  organization: Sch. of Inf. & Electron. Eng., Shandong Inst. of Bus. & Technol., Yantai, China
– sequence: 2
  surname: Zhang Min
  fullname: Zhang Min
  email: zh-dewei@163.com
  organization: Coll. of Comput. Sci., Liaocheng Univ., Liaocheng, China
BookMark eNpNjDFPwzAUhI2gErRkZWHxH0ixn-M4HktEIFIEEo1YKyd-bgNtjJxUqP-eIBi45XTfnW5OLnrfIyE3nC05Z_quzMu8Xi2BTUBkZyTSKuMJJImCjMH5_6x0OiPzn6WGTMnskkTD8M4mJRImfEWKNwwnut75MMY1hgOtvLG08AFbM4xdv6X3ZkBLfU-f8RjMfrLxy4cPanpLX_1xu6NrHK_JzJn9gNGfL0hdPNT5U1y9PJb5qoo7zcZYCN6oxjYSrGuT1HHtUDiHoAEaocAyJo20rQJj0AqGaYMITrupxlYnYkFuf287RNx8hu5gwmkjJQiumfgGmb9QZw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICTA.2010.38
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424472802
1424472806
EndPage 1135
ExternalDocumentID 5523190
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-331b7bdb52dfc46f19fe3ffe2922b372d005a5dc72aaed30e6bee2f9f22bec943
IEDL.DBID RIE
ISBN 9781424472796
1424472792
IngestDate Wed Aug 27 08:34:34 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2010928758
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-331b7bdb52dfc46f19fe3ffe2922b372d005a5dc72aaed30e6bee2f9f22bec943
PageCount 4
ParticipantIDs ieee_primary_5523190
PublicationCentury 2000
PublicationDate 2010-May
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-May
PublicationDecade 2010
PublicationTitle 2010 International Conference on Intelligent Computation Technology and Automation
PublicationTitleAbbrev ICICTA
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452201
Score 1.5599601
Snippet The short-term load forecasting model based on neural network has been applied widely in energy management systems (EMS) because of its high forecasting...
SourceID ieee
SourceType Publisher
StartPage 1132
SubjectTerms Artificial neural networks
Autoregressive processes
Economic forecasting
Load forecasting
Load modeling
Medical services
Neural Network
Neural networks
Power system modeling
Power system reliability
Predictive models
Rough Set
Very Short-Term Load Forecasting
Title Very Short-Term Load Forecasting Based on Neural Network and Rough Set
URI https://ieeexplore.ieee.org/document/5523190
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG7AePCkBoy_04NHJ_3BKD0qkUhiCJHFcCPt3mskMZuBYeJ_b1sGevDiad16abtsX9_r-76PkBsfkjjwSOJjE8WSbkw05dol1gBDv4VWkkM0m1DjcX8205MGud1xYRAxFp_hXWjGs3wo83VIlXVSHzV5AGuSplJqw9Xa5VOiNDjjW-6WCsJ4W0mn-r5XizZypjujwWiQ3W9KuwI35Ze1SkSW4eH_xnRE2j8UPTrZgc8xaWDRIsNXXH7R6ZvfUieZ_-XS59IADe6buVmF-mb64EELaFnQIMph3v0lVoFTUwB9CYY9dIpVm2TDx2zwlNRGCclCsyqRkltlwaYCXN7tOa4dSudQaCGsVAL8l2ZSyJUwBkEy7FlE4bTz3Zjrrjwhe0VZ4CmhwqR9J1MPbUG6zYGVGhT2UaIzXAE_I62wBPOPjRTGvJ79-d-PL8jB9rCd8UuyVy3XeEX2889qsVpex_f3DTDXl8s
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoy_7cGj07XdKD0qkUBEQmQx3Ei39xpJzGZgmPjf25aBHrx4Wrde2i7b1_f6vu8j5NqGJAYsktjYRIZB5BNNmTJBqiFEu4WWgoE3m5DDYXsyUaMaudlwYRDRF5_hrWv6s3wosqVLld3FNmqyALZFtuMo4mzF1tpkVLw4eMjW7C3ppPHWok7VfauSbWShuut3-p3kflXc5dgpv8xVPLZ09_83qgPS_CHp0dEGfg5JDfMG6b7i_IuO3-ymOkjsT5cOCg3U-W9meuEqnOmDhS2gRU6dLId-txdfB051DvTFWfbQMZZNknQfk04vqKwSgpkKy0AIlsoU0piDyaKWYcqgMAa54jwVkoP91nQMmeRaI4gQWykiN8rYbsxUJI5IPS9yPCaU67htRGzBzYm3GUiFAoltFGg0k8BOSMMtwfRjJYYxrWZ_-vfjK7LbS54H00F_-HRG9tZH7yE7J_VyvsQLspN9lrPF_NK_y29K05sS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+International+Conference+on+Intelligent+Computation+Technology+and+Automation&rft.atitle=Very+Short-Term+Load+Forecasting+Based+on+Neural+Network+and+Rough+Set&rft.au=Pang+Qingle&rft.au=Zhang+Min&rft.date=2010-05-01&rft.pub=IEEE&rft.isbn=9781424472796&rft.volume=3&rft.spage=1132&rft.epage=1135&rft_id=info:doi/10.1109%2FICICTA.2010.38&rft.externalDocID=5523190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424472796/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424472796/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424472796/sc.gif&client=summon&freeimage=true