The effect of rating variance on personalized recommendation
Recommender systems have made significant progress over the last decade and several industrial-strength systems have been developed. Typically, recommender systems try to predict people's preferences and use accuracy indices such as mean absolute error to judge the performance of the algorithms...
Gespeichert in:
| Veröffentlicht in: | 2010 5th International Conference on Computer Science and Education S. 366 - 370 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.08.2010
|
| Schlagworte: | |
| ISBN: | 1424460026, 9781424460021 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recommender systems have made significant progress over the last decade and several industrial-strength systems have been developed. Typically, recommender systems try to predict people's preferences and use accuracy indices such as mean absolute error to judge the performance of the algorithms. Recently, the diversity index is widely accepted as another metric. However, the ability of a recommendation algorithm to gain both accuracy and diversity at the same time remains largely unexplored. Variance based collaborative filtering is proposed as an improvement to satisfy the two measures. In this paper, we give a detail discussion on the effect of rating variance of collaborative filtering (CF) and get some different results. We find that the variance-based algorithm has limited ability to overcome the accuracy-diversity tradeoff. In fact the improvement in diversity comes at the expense of the precision. How to solve the dilemma is still a problem deserved further researching. |
|---|---|
| AbstractList | Recommender systems have made significant progress over the last decade and several industrial-strength systems have been developed. Typically, recommender systems try to predict people's preferences and use accuracy indices such as mean absolute error to judge the performance of the algorithms. Recently, the diversity index is widely accepted as another metric. However, the ability of a recommendation algorithm to gain both accuracy and diversity at the same time remains largely unexplored. Variance based collaborative filtering is proposed as an improvement to satisfy the two measures. In this paper, we give a detail discussion on the effect of rating variance of collaborative filtering (CF) and get some different results. We find that the variance-based algorithm has limited ability to overcome the accuracy-diversity tradeoff. In fact the improvement in diversity comes at the expense of the precision. How to solve the dilemma is still a problem deserved further researching. |
| Author | Wei Zeng Yu-Xiao Zhu Qian-Ming Zhang |
| Author_xml | – sequence: 1 surname: Yu-Xiao Zhu fullname: Yu-Xiao Zhu email: zhuyuxiao1314@163.com organization: Web Sci. Center, Univ. of Electron. Sci. & Technol. of China, Chengdu, China – sequence: 2 surname: Wei Zeng fullname: Wei Zeng organization: Web Sci. Center, Univ. of Electron. Sci. & Technol. of China, Chengdu, China – sequence: 3 surname: Qian-Ming Zhang fullname: Qian-Ming Zhang organization: Web Sci. Center, Univ. of Electron. Sci. & Technol. of China, Chengdu, China |
| BookMark | eNpFT81Kw0AYXLGCtvYF9LIvkPrtX5IFLxKqFgoemnv5uvlWV5rdsgmCPr0BC85hhoFhmJmzWUyRGLsTsBIC7MOmaXbrlYTJG2NVKeCCzYWWWpcAWl7-G1les-UwfMIEbaQR9oY9th_EyXtyI0-eZxxDfOdfmANGRzxFfqI8pIjH8EMdz-RS31PsplyKt-zK43Gg5VkXrH1et81rsX172TRP2yJYGAuJtdXSVHUnjMbaVRPDNFMYZRW5Q60VGHQWoVPCqoMAr0yFVekt1FhJtWD3f7WBiPanHHrM3_vzWfULJsVIvA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCSE.2010.5593610 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424460042 9781424460052 1424460050 9781424460045 |
| EndPage | 370 |
| ExternalDocumentID | 5593610 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-2a8942578d154a8c754a061015393ecb84305ac9a0d3193b10f357a76f908a723 |
| IEDL.DBID | RIE |
| ISBN | 1424460026 9781424460021 |
| IngestDate | Wed Aug 27 03:07:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-2a8942578d154a8c754a061015393ecb84305ac9a0d3193b10f357a76f908a723 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_5593610 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Aug. |
| PublicationDateYYYYMMDD | 2010-08-01 |
| PublicationDate_xml | – month: 08 year: 2010 text: 2010-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 5th International Conference on Computer Science and Education |
| PublicationTitleAbbrev | ICCSE |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452519 |
| Score | 1.4558014 |
| Snippet | Recommender systems have made significant progress over the last decade and several industrial-strength systems have been developed. Typically, recommender... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 366 |
| SubjectTerms | Accuracy Collaboration Collaborative Filtering Diversity Motion pictures Prediction algorithms Rating Variance Recommender systems Training |
| Title | The effect of rating variance on personalized recommendation |
| URI | https://ieeexplore.ieee.org/document/5593610 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1q8eBJpRW_ycGjsdlm2yTgbWlRkFKwSG8lu8lKD-6Wuu3BX-_MfongxcuS3UNIdgjzMjPvDcAdovg4tU7yeBgLHoap5OjnPdcBBRlIr6VU-3x7UbOZXi7NvAP3LRfGe18Wn_kHGpa5fJcnOwqVDUbUfo74VAdKqYqr1cZTSBoc0UjD3aJ007iRdKrfg4Y0I8zgOYpeJ1VlVz3rr_YqpXeZHv9vXSfQ_6HpsXnrgE6h47MePKLhWVWlwfKUkYGzd7bHKzHZl-UZ2zT4-8s7RhfiD5y-aq3Uh8V0soieeN0iga-NKPjQalMeOodIyOpE4RMdNLp4aaRPYk2CXjYxVjg8ajIORCpHyqpxaoS2aijPoJvlmT8H5qzRBtGRH5kQf2VojXAIH0JpA-tSnVxAjza-2lQiGKt6z5d_f76CoyrNTpVy19Attjt_A4fJvlh_bm9Ly30DL4KS-Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1KFfSk0orf5uDRtdlNtpuAt1JpsZaCRXor2U1WenC31LYHf70z-1ERvHhZsnsIyQ5hXmbmvQG4QxQfp8YKLw5i7kmZCg_9vPOUT0EG0msp1D7fRtF4rGYzPWnA_Y4L45wris_cAw2LXL7Nkw2FyjohtZ8jPtVeKGXgl2ytXUSFxMERj9TsLUo4dWtRp-rdr2kzXHeGvd5rv6ztqub91WCl8C9PR_9b2TG0f4h6bLJzQSfQcFkLHtH0rKzTYHnKyMTZO9vipZgszPKMLWsE_uUsoyvxB05fNldqw_SpP-0NvKpJgrfQfO0FRuni2FnEQkYlET7RRaOTF1q4JFYk6WUSbbjFwyZin6cijEzUTTVXJgrEKTSzPHNnwKzRSiM-cqGW-Cul0dwigJDC-MamKjmHFm18vixlMObVni_-_nwLB4Ppy2g-Go6fL-GwTLpT3dwVNNerjbuG_WS7XnyubgorfgMM4pZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+5th+International+Conference+on+Computer+Science+and+Education&rft.atitle=The+effect+of+rating+variance+on+personalized+recommendation&rft.au=Yu-Xiao+Zhu&rft.au=Wei+Zeng&rft.au=Qian-Ming+Zhang&rft.date=2010-08-01&rft.pub=IEEE&rft.isbn=9781424460021&rft.spage=366&rft.epage=370&rft_id=info:doi/10.1109%2FICCSE.2010.5593610&rft.externalDocID=5593610 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424460021/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424460021/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424460021/sc.gif&client=summon&freeimage=true |

