Grey wolf optimization algorithm based dynamic security constrained optimal power flow

This paper proposes a Grey Wolf Optimization (GWO) based algorithm to solve Dynamic Security Constrained Optimal Power Flow (DSCOPF) problem. This endeavors to make changes of rescheduling of active power generation in power system subject to both static and dynamic constraints. The GWO algorithm sh...

Full description

Saved in:
Bibliographic Details
Published in:2016 National Power Systems Conference (NPSC) pp. 1 - 6
Main Authors: Teeparthi, Kiran, Vinod Kumar, D.M.
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a Grey Wolf Optimization (GWO) based algorithm to solve Dynamic Security Constrained Optimal Power Flow (DSCOPF) problem. This endeavors to make changes of rescheduling of active power generation in power system subject to both static and dynamic constraints. The GWO algorithm shows the capability of improving diversity in search space and also to reach a near global optimal point. To validate the GWO algorithm, simulations are performed on IEEE 30-bus system and New England 39-bus system under different fault clearing times. The results are compared with different evolutionary algorithms reported in the literature.
DOI:10.1109/NPSC.2016.7858858