Self-adaptive Clustering Algorithm Based RBF Neural Network and its Application in the Fault Diagnosis of Power Systems

Radial basis function (RBF) neural networks (NNs) have been used in pattern recognition. The application of RBF network for fault diagnosis in high voltage transmission lines is presented in this paper. A self-adaptive clustering algorithm is proposed for the clustering process of RBFNN. The results...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific s. 1 - 6
Hlavní autoři: Jiang Huilan, Guan Ying, Li Dongwei, Xu Jianqiang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2005
Témata:
ISBN:0780391144, 9780780391147
ISSN:2160-8636
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Radial basis function (RBF) neural networks (NNs) have been used in pattern recognition. The application of RBF network for fault diagnosis in high voltage transmission lines is presented in this paper. A self-adaptive clustering algorithm is proposed for the clustering process of RBFNN. The results of the simulation and fault tolerance test confirm that the proposed method can diagnose the fault of high voltage transmission lines quickly and correctly. Furthermore, it has the fault-tolerant ability that can identify the distorted input signals caused by the disturbance, and therefore it has the practical application value for real-timing information processing system
ISBN:0780391144
9780780391147
ISSN:2160-8636
DOI:10.1109/TDC.2005.1547050