Incremental, approximate database queries and uncertainty for exploratory visualization

Exploratory data visualization calls for iterative analyses, but very large databases are often far too slow to allow interactive exploration. Incremental, approximate database queries exchange precision for speed: by sampling from the full database, the system can resolve queries rapidly. As the sa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 IEEE Symposium on Large Data Analysis and Visualization s. 73 - 80
Hlavní autor: Fisher, D.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2011
Témata:
ISBN:9781467301565, 1467301566
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Exploratory data visualization calls for iterative analyses, but very large databases are often far too slow to allow interactive exploration. Incremental, approximate database queries exchange precision for speed: by sampling from the full database, the system can resolve queries rapidly. As the sample gets broader, the precision increases at the cost of time. As the precision of the sample value can be estimated, we can represent the range of possible values. This range may be visually represented using uncertainty visualization techniques. This paper outlines the current literature in both incremental approximate queries and in uncertainty visualization. The two fields mesh well: incremental techniques can collect data in interactive time, and uncertainty techniques can show bounded error.
AbstractList Exploratory data visualization calls for iterative analyses, but very large databases are often far too slow to allow interactive exploration. Incremental, approximate database queries exchange precision for speed: by sampling from the full database, the system can resolve queries rapidly. As the sample gets broader, the precision increases at the cost of time. As the precision of the sample value can be estimated, we can represent the range of possible values. This range may be visually represented using uncertainty visualization techniques. This paper outlines the current literature in both incremental approximate queries and in uncertainty visualization. The two fields mesh well: incremental techniques can collect data in interactive time, and uncertainty techniques can show bounded error.
Author Fisher, D.
Author_xml – sequence: 1
  givenname: D.
  surname: Fisher
  fullname: Fisher, D.
  email: danyelf@microsoft.com
  organization: Microsoft Res., Redmond, WA, USA
BookMark eNo1UM1KxDAYjKigu_YBxEsewNakTdL2uKx_CwUvix6Xr-m3EOkmNUll69NbcJ3LMDAMM7MgF9ZZJOSWs4xzVj80j6v3LGecZ4rVeZGzM7LgQpUF41JW5ySpy-pfK3lFkhA-2Qyl6qpS1-RjY7XHA9oI_T2FYfDuaA4QkXYQoYWA9GtEbzBQsB0drUYfwdg40b3zFI9D7zxE5yf6bcIIvfmBaJy9IZd76AMmJ16S7fPTdv2aNm8vm_WqSU3NYpoL5LoCKFuhODDW6q5uO62UACHkXLgtNEdUbccKIaCSPJeosZwHzY6uLJbk7i_WIOJu8HN1P-1OVxS_xRxWAg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/LDAV.2011.6092320
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467301558
9781467301558
EndPage 80
ExternalDocumentID 6092320
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-24e1c8aa7b461a00bcd9bdc664a445565b3c1ee6bd0344a85125ece74674a4d73
IEDL.DBID RIE
ISBN 9781467301565
1467301566
IngestDate Wed Aug 27 03:10:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-24e1c8aa7b461a00bcd9bdc664a445565b3c1ee6bd0344a85125ece74674a4d73
PageCount 8
ParticipantIDs ieee_primary_6092320
PublicationCentury 2000
PublicationDate 2011-Oct.
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-Oct.
PublicationDecade 2010
PublicationTitle 2011 IEEE Symposium on Large Data Analysis and Visualization
PublicationTitleAbbrev LDAV
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669886
Score 1.590396
Snippet Exploratory data visualization calls for iterative analyses, but very large databases are often far too slow to allow interactive exploration. Incremental,...
SourceID ieee
SourceType Publisher
StartPage 73
SubjectTerms Aggregates
approximate visualization
Data visualization
Distributed databases
exploratory data analysis
Histograms
incremental visualization
Uncertainty
Uncertainty visualization
very large data
Visual databases
Title Incremental, approximate database queries and uncertainty for exploratory visualization
URI https://ieeexplore.ieee.org/document/6092320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVKxcAEqEV8ywNjQ-3EseMRARVDVXWooFvlr0iRUIratIJ_z9lOi5BY2OIMiXWJ9e7d3btD6E7neWmoNgkTWQkEpbRwpLhNSiFLIBRCFVEoPBaTSTGfy2kHDfZaGOdcKD5z9_4y5PLt0mx8qGzICbgjKRD0AyF41Grt4ykAnbIoeNBucf_bgp-ya-nUrvM2q0mJHI6fHl5jA8_2ob-mqwRwGR3_b1snqP-j0sPTPf6coo6re-gNDnwM-an3AQ4dwz8r8Eod9rWgHrMwIIHnx1jVFgOqxZqA5guD-4rj60PmHW-rtVdcRp1mH81Gz7PHl6QdnpBUkjRJyhw1hVJCM04VIdpYqa3hnCnGcrCFzgx1jmvre_4p8LvS3BkXho8oZkV2hrr1snbnCHvmqqWgzAJXy20pM8KMs6RURWa1pBeo522y-IjtMRatOS7_vn2FjtJdGR29Rt1mtXE36NBsm2q9ug3f9BvX4qCr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KFfSk0opv9-CxsbvJZpM9iloqxtJD0d7KPiEgqbRp0X_vPtKK4MVbNodkmWT55puZbwaAG5GmRmIhI5IlxhIUo-yRoioyGTOWUGQ8D0LhIhuN8umUjVugt9XCaK198Zm-dZc-l6_mcuVCZX2KrDsSW4K-kxISo6DW2kZULHiyPKdevUXdj2s9lU1Tp2adNnlNjFi_eLh7DS08m8f-mq_i4WVw8L-NHYLuj04PjrcIdARauuqAN3vkQ9CPv_eg7xn-WVq_VENXDepQC1oscAwZ8kpBi2uhKqD-gtaBheH1PvcO1-XSaS6DUrMLJoPHyf0wasYnRCVDdRQTjWXOeSYIxRwhIRUTSlJKOCGptYVIJNaaCuW6_nHrecWpltqPH-FEZckxaFfzSp8A6LirYBkmyrK1VBmWICK1QobniRIMn4KOs8nsIzTImDXmOPv79jXYG05eilnxNHo-B_vxpqgOX4B2vVjpS7Ar13W5XFz57_sNZXGj8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Symposium+on+Large+Data+Analysis+and+Visualization&rft.atitle=Incremental%2C+approximate+database+queries+and+uncertainty+for+exploratory+visualization&rft.au=Fisher%2C+D.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781467301565&rft.spage=73&rft.epage=80&rft_id=info:doi/10.1109%2FLDAV.2011.6092320&rft.externalDocID=6092320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/sc.gif&client=summon&freeimage=true