The Improvement of Dropout Strategy Based on Two Evolutionary Algorithms

Dropout strategy is a simple and common regularization method in the construction of deep network that it can control the status of units in the Dropout layers according to the constant probability values in the training processes to prevent the training from overfitting. However, the probability va...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) s. 814 - 819
Hlavní autoři: Chen, Tianhao, Jia, Wenchuan, Sun, Yi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.12.2018
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dropout strategy is a simple and common regularization method in the construction of deep network that it can control the status of units in the Dropout layers according to the constant probability values in the training processes to prevent the training from overfitting. However, the probability values of the Dropout strategy are single and decided by users, which means that we need more training iterations to receive better results and avoid less fitting problem. In this paper, two evolutionary algorithms, genetic algorithm and differential evolution algorithm are used to optimize the set probability values of network units to improve dropout strategy and they are proved to be able to increase the accuracy of the original method to about 5%.
AbstractList Dropout strategy is a simple and common regularization method in the construction of deep network that it can control the status of units in the Dropout layers according to the constant probability values in the training processes to prevent the training from overfitting. However, the probability values of the Dropout strategy are single and decided by users, which means that we need more training iterations to receive better results and avoid less fitting problem. In this paper, two evolutionary algorithms, genetic algorithm and differential evolution algorithm are used to optimize the set probability values of network units to improve dropout strategy and they are proved to be able to increase the accuracy of the original method to about 5%.
Author Chen, Tianhao
Jia, Wenchuan
Sun, Yi
Author_xml – sequence: 1
  givenname: Tianhao
  surname: Chen
  fullname: Chen, Tianhao
  organization: Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P. R. China
– sequence: 2
  givenname: Wenchuan
  surname: Jia
  fullname: Jia, Wenchuan
  organization: Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, P. R. China
– sequence: 3
  givenname: Yi
  surname: Sun
  fullname: Sun, Yi
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai, P. R. China
BookMark eNotj91OwjAYQGuiF4q8gN70BTb75_rtEhBlCckS3T3p2q-wZFuXUjC8vSZwde5Oznki92MYkZAXznLOWfn2XS-rOheMQw5F8S6FuiPzUgPXAjiTWsMj2TQHpNUwxXDGAcdEg6cfMUzhlOhPiibh_kKX5oiOhpE2v4Guz6E_pS6MJl7oot-H2KXDcHwmD970R5zfOCPN57pZbbJt_VWtFtusK1nKBNdSCKvRCVAcrWuFVWDBe6WkAKmMZG3BnLZCWdOiMQ69Q868AQdKyBl5vWo7RNxNsRv-M3a3PfkH1JtKqw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ROBIO.2018.8665324
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISBN 9781728103778
1728103770
EndPage 819
ExternalDocumentID 8665324
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-217322c7ed2841ecdb2c48c8ff4432834a30b60d7c24cabeaadefde10fa8d8423
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:02 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-217322c7ed2841ecdb2c48c8ff4432834a30b60d7c24cabeaadefde10fa8d8423
PageCount 6
ParticipantIDs ieee_primary_8665324
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO)
PublicationTitleAbbrev ROBIO
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6796509
Snippet Dropout strategy is a simple and common regularization method in the construction of deep network that it can control the status of units in the Dropout layers...
SourceID ieee
SourceType Publisher
StartPage 814
SubjectTerms AI-Based Methods
Big Data in Robotics and Automation
Computer Vision for Other Robotic Applications
Dropout strategy
Encoding
Evolutionary computation
Genetic algorithms
Mathematical model
Sociology
Statistics
Training
Title The Improvement of Dropout Strategy Based on Two Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/8665324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0A8cDJDzB-Zw8eLWzbtbs9ikLwAsRw4Eb2Y6ok2ppaMPx7d9uKMfHirWmaNJndzXszO-8NwLVKHHHwjRdZ7LUJipKeVMb3uK-os-8SPFDlsAk-mYjFIp414GanhUHEsvkMe-6xvMs3mV67UlnfebNZAtCEJue80mp962Bo3H-aDh6nrllL9OoPf01MKQFjtP-_Xx1A90d5R2Y7TDmEBqZH0HaMsDJU7sDYLiypSgFlZY9kCXlwow7WBamtZrdkYLHJkCwl88-MDDf19pL5lty9Pmf5qnh5--jCfDSc34-9ehyCt4pp4dncwR4-zdFYRPFRGxVoJrRIEsZCSxKYDKmKqOE6YFoqlNJgYtCniRRGWNZ0DK00S_EESGCTBKFvw0gZJ4UXMXLUQSgZUzrWND6FjovI8r0yvFjWwTj7-_U5tF3Qqx6PC2gV-RovYU9vbGTyq3KVvgCaeZYw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmsjJBxjf7sGjhT4Wuj2KQiAiENMDN7KPqZJoa2rB8O_dbSvGxIu3pmnSZKab75vpfN8AXIvIEAdHWR2NvbpAEdziQjmW7wjb2Hcx3xX5sgl_PGazWTCtwM1GC4OI-fAZNs1l_i9fJXJpWmUt482mCcAWbLcpdZ1CrfWthLGD1tOkO5yYcS3WLB_9tTMlh4z-3v9etg-NH-0dmW5Q5QAqGB9CzXDCwlK5DgOdWlI0A_LeHkkicm-WHSwzUprNrklXo5MiSUzCz4T0VuUHxtM1uX19TtJF9vL20YCw3wvvBla5EMFaBHZm6epBHz_po9KY4qBUwpWUSRZFlHqaJlDu2aJjK1-6VHKBnCuMFDp2xJlimjcdQTVOYjwG4uoygcm21xHKiOFZgD5K1-OUChlIOziBuonI_L2wvJiXwTj9-_YV7A7Cx9F8NBw_nEHNJKCY-DiHapYu8QJ25EpHKb3MM_YFl8mZdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+International+Conference+on+Robotics+and+Biomimetics+%28ROBIO%29&rft.atitle=The+Improvement+of+Dropout+Strategy+Based+on+Two+Evolutionary+Algorithms&rft.au=Chen%2C+Tianhao&rft.au=Jia%2C+Wenchuan&rft.au=Sun%2C+Yi&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=814&rft.epage=819&rft_id=info:doi/10.1109%2FROBIO.2018.8665324&rft.externalDocID=8665324