Spatial improved fuzzy c-means clustering for image segmentation

The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a new modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, GFCM, similar to FCM, is sensitive to noise in normal gray...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 International Conference on Electronic and Mechanical Engineering and Information Technology Ročník 9; s. 4791 - 4794
Hlavní autoři: Feng Zhao, Licheng Jiao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2011
Témata:
ISBN:9781612840871, 1612840876
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a new modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, GFCM, similar to FCM, is sensitive to noise in normal gray-level images. In order to overcome this problem, a novel fuzzy segmentation algorithm called spatial improved fuzzy c-means clustering algorithm (IFCM_S) is proposed in this paper. In IFCM_S, a spatial constraint term is introduced into the objective function of GFCM, and the center and membership function update equations are also presented. Experiments on synthetic and synthetic aperture radar (SAR) images, show that the proposed method behaves well in segmentation performance and speed.
ISBN:9781612840871
1612840876
DOI:10.1109/EMEIT.2011.6024110