Static hand gesture recognition using stacked Denoising Sparse Autoencoders
With the advent of personal computers, humans have always wanted to communicate with them in either their natural language or by using gestures. This gave birth to the field of Human Computer Interaction and its subfield Automatic Sign Language Recognition. This paper proposes the method of automati...
Uloženo v:
| Vydáno v: | 2014 Seventh International Conference on Contemporary Computing (IC3) s. 99 - 104 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2014
|
| Témata: | |
| ISBN: | 1479951722, 9781479951727 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With the advent of personal computers, humans have always wanted to communicate with them in either their natural language or by using gestures. This gave birth to the field of Human Computer Interaction and its subfield Automatic Sign Language Recognition. This paper proposes the method of automatic feature extraction of the images of hand. These extracted features are then used to train the Softmax classifier to classify them into 20 classes. Five stacked Denoising Sparse Autoencoders (DSAE) trained in unsupervised fashion are used to extract features from image. The proposed architecture is trained and tested on a standard dataset [1] which was extended by adding random jitters such as rotation and Gaussian noise. The performance of the proposed architecture is 83% which is better than shallow Neural Network trained on manual hand-engineered features called Principal Components which is used as a benchmark. |
|---|---|
| AbstractList | With the advent of personal computers, humans have always wanted to communicate with them in either their natural language or by using gestures. This gave birth to the field of Human Computer Interaction and its subfield Automatic Sign Language Recognition. This paper proposes the method of automatic feature extraction of the images of hand. These extracted features are then used to train the Softmax classifier to classify them into 20 classes. Five stacked Denoising Sparse Autoencoders (DSAE) trained in unsupervised fashion are used to extract features from image. The proposed architecture is trained and tested on a standard dataset [1] which was extended by adding random jitters such as rotation and Gaussian noise. The performance of the proposed architecture is 83% which is better than shallow Neural Network trained on manual hand-engineered features called Principal Components which is used as a benchmark. |
| Author | Nandi, G. C. Kumar, Varun Kala, Rahul |
| Author_xml | – sequence: 1 givenname: Varun surname: Kumar fullname: Kumar, Varun email: varun.k.iiit@gmail.com organization: Robot. & Artificial Intell. Lab., Indian Inst. of Inf. Technol., Allahabad, India – sequence: 2 givenname: G. C. surname: Nandi fullname: Nandi, G. C. organization: Robot. & Artificial Intell. Lab., Indian Inst. of Inf. Technol., Allahabad, India – sequence: 3 givenname: Rahul surname: Kala fullname: Kala, Rahul organization: Robot. & Artificial Intell. Lab., Indian Inst. of Inf. Technol., Allahabad, India |
| BookMark | eNpFj81KAzEURiMqaGv3gpu8wNTc_JplGa0WCy7afckkd8agJmWSWfj2ghZcfZyzOPDNyEXKCQm5BbYEYPZ-04olZyCX-sEaUOqMzEAaaxUYwc7_gfMrsigldoxro6U2cE1ed9XV6Om7S4EOWOo0Ih3R5yHFGnOiU4lpoKU6_4GBPmLK8dfsjm4sSFdTzZh8DjiWG3LZu8-Ci9POyX79tG9fmu3b86ZdbZtoWW3Ao0SBQQPXrpNeehZEJ1nfGeeZNwpkEEGr4KRm4IyFXiuF3HgueqN6MSd3f9mIiIfjGL_c-H04fRc_2fRQEQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IC3.2014.6897155 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1479951730 1479951714 9781479951710 9781479951734 |
| EndPage | 104 |
| ExternalDocumentID | 6897155 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i90t-1ce4e3ed6126ab4c4c0d3b40fb7ac0c7514d3d65da4601a791f655e27c23f75f3 |
| IEDL.DBID | RIE |
| ISBN | 1479951722 9781479951727 |
| IngestDate | Wed Jun 26 19:23:45 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-1ce4e3ed6126ab4c4c0d3b40fb7ac0c7514d3d65da4601a791f655e27c23f75f3 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_6897155 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-Aug. |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 2014-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2014 Seventh International Conference on Contemporary Computing (IC3) |
| PublicationTitleAbbrev | IC3 |
| PublicationYear | 2014 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib026764671 |
| Score | 1.6035655 |
| Snippet | With the advent of personal computers, humans have always wanted to communicate with them in either their natural language or by using gestures. This gave... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 99 |
| SubjectTerms | Autoencoders Cost function Deep learning Feature extraction Gesture recognition Neurons Noise reduction Static hand gesture recognition Training Vectors |
| Title | Static hand gesture recognition using stacked Denoising Sparse Autoencoders |
| URI | https://ieeexplore.ieee.org/document/6897155 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA7b8OBJZRN_k4NHu7Vp2ixHmQ5FGQOH7DaSlxfppR2z9e83ybqJ4MVbE2goLw3ve3nf9x4ht1YyCxkzkfUSd-5CiEgqxSOmgRmTSGlDM5j3VzGbjZdLOe-Qu70WBhED-QyH_jHk8k0Fjb8qG-VjKZz_65KuEPlWq7X7d1gucnfmk6Dd8kXOnGNmu5JO7Vjs0pSxHD1PUs_r4sN2zV_NVYJvmR7976uOyeBHpEfne_dzQjpY9smLB48FUH8fTn3qqNkg3ZOEqpJ6nvsHdZDQnV5DH7CsijDztnYRLtL7pq58aUtPbx6QxfRxMXmK2n4JUSHjOkoAOaZoHGbJlebAITap5rHVQkEMwkEjk5o8M4q7KEwJmdg8y5AJYKkVmU1PSa-sSjwjlIER7hUHdWLNBaBUYAxojVoKpVV8TvreDqv1tiLGqjXBxd_Tl-TQm3pLm7sivXrT4DU5gK-6-NzchG38BtkPnPI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4QTfSkBoz4swePDrquW-nRoAQCEhKJ4Ub649XsshHc_Pttx8CYePG2NlmzvK553-v7vvcQerCCWh1TE1gvcWcuhAiElCygSlNjQiFs1Qzmfcpns_5yKeYN9LjXwgBART6Drn-scvkm16W_KuslfcGd_ztAhzFjlGzVWru_hyY8cac-rNRbvsyZc810V9SpHvNdopKI3ngQeWYX69ar_mqvUnmX4en_vusMtX9keni-d0DnqAFZC008fEw19jfi2CePyg3gPU0oz7Bnun9gBwrd-TX4GbI8rWbe1i7GBfxUFrkvbukJzm20GL4sBqOg7pgQpIIUQaiBQQTGoZZEKqaZJiZSjFjFpSaaO3BkIpPERjIXh0kuQpvEMVCuaWR5bKML1MzyDC4Rptpw94oDO0QxrkFIbYxWCpTgUknSQS1vh9V6WxNjVZvg6u_pe3Q8WrxOV9PxbHKNTrzZtyS6G9QsNiXcoiP9VaSfm7tqS78BNIugOQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2014+Seventh+International+Conference+on+Contemporary+Computing+%28IC3%29&rft.atitle=Static+hand+gesture+recognition+using+stacked+Denoising+Sparse+Autoencoders&rft.au=Kumar%2C+Varun&rft.au=Nandi%2C+G.+C.&rft.au=Kala%2C+Rahul&rft.date=2014-08-01&rft.pub=IEEE&rft.isbn=1479951722&rft.spage=99&rft.epage=104&rft_id=info:doi/10.1109%2FIC3.2014.6897155&rft.externalDocID=6897155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479951727/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479951727/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479951727/sc.gif&client=summon&freeimage=true |

