Self-Organizing Migrating Algorithm Team To Team Adaptive - SOMA T3A
Swarm intelligence algorithm and its variants are constantly evolving over the years, the SOMA algorithm is also not out of that trend. In this paper, we propose a novel strategy of SOMA, called SOMA T3A. The proposed algorithm is divided into three main processes, namely Organization, Migration, an...
Saved in:
| Published in: | 2019 IEEE Congress on Evolutionary Computation (CEC) pp. 1182 - 1187 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.06.2019
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Swarm intelligence algorithm and its variants are constantly evolving over the years, the SOMA algorithm is also not out of that trend. In this paper, we propose a novel strategy of SOMA, called SOMA T3A. The proposed algorithm is divided into three main processes, namely Organization, Migration, and Update. Migrants are selected from the initial population and migrate towards the selected Leader according to the organization process. The Step and PRT parameters are no longer fixed like in the original version; instead, they are adapted through each migration loop. The performance of the algorithm is proven on the 58 well-known benchmark problems from the CEC2013 as well as CEC2017 benchmark suites. The results are compared with the SOMA family and compared with the state-of-the-art algorithms to show its promising performance. |
|---|---|
| DOI: | 10.1109/CEC.2019.8790202 |