Activity Detection for scientific visualization

Understanding the science behind ultra-scale simulations requires extracting meaning from data sets of hundreds of terabytes or more. At extreme scales, the data sets are so huge, there is not even enough time to view the data, let alone explore it with basic visualization methods. Automated tools a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 IEEE Symposium on Large Data Analysis and Visualization S. 117 - 118
Hauptverfasser: Ozer, S., Silver, D., Bemis, K., Martin, P., Takle, J.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2011
Schlagworte:
ISBN:9781467301565, 1467301566
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Understanding the science behind ultra-scale simulations requires extracting meaning from data sets of hundreds of terabytes or more. At extreme scales, the data sets are so huge, there is not even enough time to view the data, let alone explore it with basic visualization methods. Automated tools are necessary for knowledge discovery to help sift through the information and isolate characteristic patterns, thereby enabling the scientist to study local interactions, the origin of features, and their evolution, i.e. activity detection in large volumes of 3D data. Defining and modelling such activities in 3D scientific data sets remains an open research problem, though it has been widely studied in the computer vision community. In this work we demonstrate how utilizing activity detection can help us model and detect complex events (activities) in large 3D scientific data sets. We employ Petri nets which support distributed and discrete graphical modelling of spatio-temporal patterns to model activities in time-varying 3D scientific data sets. We demonstrate the use of Petri nets on three different data sets.
AbstractList Understanding the science behind ultra-scale simulations requires extracting meaning from data sets of hundreds of terabytes or more. At extreme scales, the data sets are so huge, there is not even enough time to view the data, let alone explore it with basic visualization methods. Automated tools are necessary for knowledge discovery to help sift through the information and isolate characteristic patterns, thereby enabling the scientist to study local interactions, the origin of features, and their evolution, i.e. activity detection in large volumes of 3D data. Defining and modelling such activities in 3D scientific data sets remains an open research problem, though it has been widely studied in the computer vision community. In this work we demonstrate how utilizing activity detection can help us model and detect complex events (activities) in large 3D scientific data sets. We employ Petri nets which support distributed and discrete graphical modelling of spatio-temporal patterns to model activities in time-varying 3D scientific data sets. We demonstrate the use of Petri nets on three different data sets.
Author Martin, P.
Silver, D.
Bemis, K.
Ozer, S.
Takle, J.
Author_xml – sequence: 1
  givenname: S.
  surname: Ozer
  fullname: Ozer, S.
  organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
– sequence: 2
  givenname: D.
  surname: Silver
  fullname: Silver, D.
  organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
– sequence: 3
  givenname: K.
  surname: Bemis
  fullname: Bemis, K.
  organization: Dept. of Earth & Planetary Sci., Rutgers Univ., Piscataway, NJ, USA
– sequence: 4
  givenname: P.
  surname: Martin
  fullname: Martin, P.
  organization: Dept. of Aerosp. Eng., Univ. Maryland, College Park, MD, USA
– sequence: 5
  givenname: J.
  surname: Takle
  fullname: Takle, J.
  organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
BookMark eNo1j91Kw0AUhFesoK15APEmL5B0f9yzu5eh9Q8C3pTelpPNObBSE0lioT69FevczHwMDMxczLq-IyHulCyVkmFZr6ttqaVSJcigjXYXYq4ewBmprPWXIgvO_zPYa5GN47s8CSB4DzdiWcUpHdJ0zNc00Sn3Xc79kI8xUTclTjE_pPEL9-kbf8tbccW4Hyk7-0Jsnh43q5eifnt-XVV1kYKcCmUAkGTTtrrRLTMhADTcog0kNTWEyMDRBh2RGCOzDOiCJ-eD9mjMQtz_zSYi2n0O6QOH4-580fwAjFlIRw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/LDAV.2011.6092327
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467301558
9781467301558
EndPage 118
ExternalDocumentID 6092327
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-1366ae0bdd2b2dffea666bfda59e02ebeaaf6fc592caefacff09a798e78928a33
IEDL.DBID RIE
ISBN 9781467301565
1467301566
IngestDate Wed Aug 27 03:10:02 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-1366ae0bdd2b2dffea666bfda59e02ebeaaf6fc592caefacff09a798e78928a33
PageCount 2
ParticipantIDs ieee_primary_6092327
PublicationCentury 2000
PublicationDate 2011-Oct.
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-Oct.
PublicationDecade 2010
PublicationTitle 2011 IEEE Symposium on Large Data Analysis and Visualization
PublicationTitleAbbrev LDAV
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669886
Score 1.4879758
Snippet Understanding the science behind ultra-scale simulations requires extracting meaning from data sets of hundreds of terabytes or more. At extreme scales, the...
SourceID ieee
SourceType Publisher
StartPage 117
SubjectTerms Action
Activity detection
Computational modeling
Data models
Data visualization
Event Detection
Feature extraction
Petri nets
Solid modeling
Three dimensional displays
Title Activity Detection for scientific visualization
URI https://ieeexplore.ieee.org/document/6092327
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFTW5LSNx461rUsy3qMoWnoUEKGULIFWT6BF6fk9fsjyY5LoUs3SYPQoYN7fvcBPOeSE4MuTM1yJmKWYhEXOmMx4U6_KKeWMhvIJsRsJpdLNe_BS4eFQcTQfIavfhlq-eXa7H2qLOHEuSNU9KEvBG-wWl0-xZlOJSUP2C3u1db5KaeRTu0-b6uaKVHJ52T81QzwbC_9xa4SjMv04n_PuoTRD0ovmnf25wp6WA8hGZuGDyKa4C60WdWR80ujBvjo-4KiQ7X1SMoGfzmCxfR98fYRt6QIcaWIZ47nXCMpypIWtLQWtYs_ClvqXCGh7ke0ttyaXFGj0WpjLVFaKIlCKip1ll3DoF7XeANRKjVVmHqkKXemLCsYQ14KTRFTy4y5haGXdfXdjL1YtWLe_X18D-f01B6XPsBgt9njI5yZw67abp7CXx0B0euR7Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQToBbxJgMjoY7jOPZYUaoiStShQt0qxzlLXVLU1-_HdtIgJBY224Plsy3d87sP4DERnGi0bmqcsDRkEeZhrmIWEm7_F-XUUGY82USaZWI2k5MWPDVYGET0xWf47IY-l18s9daFynqcWHOEpgdw6JizarRWE1GxylMKwT16i7uPay2VfVOnep7Uec2IyN540P-sWnjW2_7iV_HqZXj6v4OdQfcHpxdMGg10Di0sO9Dr64oRIhjgxhdalYG1TIMK-ugqg4LdYu2wlBUCswvT4ev0ZRTWtAjhQhLHHc-5QpIXBc1pYQwq64HkplCJRELtmyhluNGJpFqhUdoYIlUqBaZCUqHi-ALa5bLESwgioajEyGFNub3POGcMeZEqihgZpvUVdJys86-q8cW8FvP67-UHOB5NP8bz8Vv2fgMndF8sF91Ce7Pa4h0c6d1msV7d-3f7BqFglTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+Symposium+on+Large+Data+Analysis+and+Visualization&rft.atitle=Activity+Detection+for+scientific+visualization&rft.au=Ozer%2C+S.&rft.au=Silver%2C+D.&rft.au=Bemis%2C+K.&rft.au=Martin%2C+P.&rft.date=2011-10-01&rft.pub=IEEE&rft.isbn=9781467301565&rft.spage=117&rft.epage=118&rft_id=info:doi/10.1109%2FLDAV.2011.6092327&rft.externalDocID=6092327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467301565/sc.gif&client=summon&freeimage=true