Inferring gene regulatory network using path consistency algorithm based on conditional mutual information and genetic algorithm

The interactions between genes can be described in the form of an intrinsic and interwoven network called Gene Regulatory Network. Discovering this interaction and accurate modeling of Gene Regulatory Network is one of the key issues in understanding the fundamental cell processes which may be used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 7th International Conference on Computer and Knowledge Engineering (ICCKE) S. 98 - 103
Hauptverfasser: Iranmanesh, Sima, Sattari-Naeini, Vahid, Ghavami, Behnam
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The interactions between genes can be described in the form of an intrinsic and interwoven network called Gene Regulatory Network. Discovering this interaction and accurate modeling of Gene Regulatory Network is one of the key issues in understanding the fundamental cell processes which may be used in various medical, complex genetic diseases and drug discovery applications. In this paper, a method for inferring the gene regulatory network using a combination of Genetic Algorithm and Path Consistency Algorithm based on Conditional Mutual information is presented. In this method, for each gene, a genetic algorithm is utilized to find the most suitable predictor set of that gene. Moreover, in order to reduce the search space, the initial population for each target gene is created using the predictors obtained from Path Consistency Algorithm based on Conditional Mutual information method. To guide Genetic Algorithm, the multiple Pearson correlation coefficient is used. The obtained results using three evaluation criteria for biological data show that the proposed model performs better than recent similar methods.
AbstractList The interactions between genes can be described in the form of an intrinsic and interwoven network called Gene Regulatory Network. Discovering this interaction and accurate modeling of Gene Regulatory Network is one of the key issues in understanding the fundamental cell processes which may be used in various medical, complex genetic diseases and drug discovery applications. In this paper, a method for inferring the gene regulatory network using a combination of Genetic Algorithm and Path Consistency Algorithm based on Conditional Mutual information is presented. In this method, for each gene, a genetic algorithm is utilized to find the most suitable predictor set of that gene. Moreover, in order to reduce the search space, the initial population for each target gene is created using the predictors obtained from Path Consistency Algorithm based on Conditional Mutual information method. To guide Genetic Algorithm, the multiple Pearson correlation coefficient is used. The obtained results using three evaluation criteria for biological data show that the proposed model performs better than recent similar methods.
Author Iranmanesh, Sima
Ghavami, Behnam
Sattari-Naeini, Vahid
Author_xml – sequence: 1
  givenname: Sima
  surname: Iranmanesh
  fullname: Iranmanesh, Sima
  email: sima_iranmanesh@yahoo.com
  organization: Dept. of Comput. Eng., Shahid Bahonar Univ. of Kerman, Kerman, Iran
– sequence: 2
  givenname: Vahid
  surname: Sattari-Naeini
  fullname: Sattari-Naeini, Vahid
  email: vsnaeini@uk.ac.ir
  organization: Dept. of Comput. Eng., Shahid Bahonar Univ. of Kerman, Kerman, Iran
– sequence: 3
  givenname: Behnam
  surname: Ghavami
  fullname: Ghavami, Behnam
  email: ghavami@uk.ac.ir
  organization: Dept. of Comput. Eng., Shahid Bahonar Univ. of Kerman, Kerman, Iran
BookMark eNpFUMFOwzAUCxIcYOwH4JIfaEkamrRHVA2omMRl9-mlee0i2mRKU6He-HRWNomTZVu2Jd-Ra-cdEvLAWco5K5_qqvrYpBnjKi24VKWQV2RdqoLnopCsYM_ilvzUrsUQrOtohw5pwG7qIfowU4fx24cvOo2Le4R4oI13ox0jumam0Hc-2HgYqIYRDfVusY2N1jvo6TDF6QTWtT4MsIgUnPkbibb5T9-Tmxb6EdcXXJHd62ZXvSfbz7e6etkmtmQx4VkjmCmYAoE5Sp6jNlqbjKm2Bc0EN6JQwpiSN6w0IFHr5kSAYyYVl1KsyOO51iLi_hjsAGHeX24Rv3bwYNo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCKE.2017.8167936
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538608043
1538608049
EndPage 103
ExternalDocumentID 8167936
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-12c30d807a3e5e615ebdbbd207ffab031d3873dd91c09da6ebbcd91a1e2671663
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:36 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-12c30d807a3e5e615ebdbbd207ffab031d3873dd91c09da6ebbcd91a1e2671663
PageCount 6
ParticipantIDs ieee_primary_8167936
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE)
PublicationTitleAbbrev ICCKE
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6598673
Snippet The interactions between genes can be described in the form of an intrinsic and interwoven network called Gene Regulatory Network. Discovering this interaction...
SourceID ieee
SourceType Publisher
StartPage 98
SubjectTerms Biological cells
Correlation
Correlation coefficient
Gene expression
genetic algorithm
Genetic algorithms
Genetic regulatory network
path consistency algorithm based on conditional mutual information
Pearson correlation coefficient
predictor subset
Sociology
Title Inferring gene regulatory network using path consistency algorithm based on conditional mutual information and genetic algorithm
URI https://ieeexplore.ieee.org/document/8167936
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYAdejUVlD1LQ8da3ASiJ0ZgYoqIQYGNmT7LhSpJFWASmz96fUlaVGlLt0cP2TJ5-i-O393x9ijdF6LR3YgAMEIj29RmH4Kom89PB4k0qTalsUm1HSqF4tk1mBPP7EwiFiSz7BLzfItH3K3J1dZT9ObQRQ3WVOpuIrV-o6DkUlvMhy-jIispbr1xF8VU0qFMT7731bnrHOMvOOzH51ywRqYtdnnhMbIAce9uJEXVf34vDjwrGJxc6KvrziVF-aOKK9bgsIHbt5Wubf-XzectBXwPKNhWFcOQL7ZU_QIr5OnUic3GZSb-Pt0XN1h8_FoPnwWdeUEsU7kTgShiyRoqUyEA_SYBS1YC6FUaWqs_40h0ioCSAInEzAxWuv8hwkwjL39FEeXrJXlGV4xHpaZQv0s5S3J0GrjXD_VgbMemEAQmGvWpsNbvle5MZb1ud383X3LTkk-FRnujrV2xR7v2Yn72K23xUMp0C_76KjU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gmuhJDRjf7sGjhe27PRMIBCQcOHAj-5giibSmgAk3f7o7bYWYePG23Uc22dlmvpn9ZgbgmSujxV3pWxq1sAy-RUt4ibY8aeCxH3ORRLIoNhGOx9FsFk9q8LKPhUHEgnyGLWoWb_k6U1tylbUjejNwgyM49j3P4WW01k8kDI_bg05n2CW6Vtiqpv6qmVKojN75_za7gOYh9o5N9lrlEmqYNuBrQGPkgmNG4MjysoJ8lu9YWvK4GRHYF4wKDDNFpNc1geEdE--LzNj_bytG-kqzLKVhvSxdgGy1pfgRVqVPpU4mUl1sYm7UYXUTpr3utNO3qtoJ1jLmG8t2lMt1xEPhoo8GtaDUUmqHh0kipPmRtRuFrtaxrXisRYBSKvMhbHQCY0EF7hXU0yzFa2BOkSvUzAqNLenISCjlJZGtpIEm2rbFDTTo8OYfZXaMeXVut393P8Fpf_o6mo8G4-EdnJGsSmrcPdQ3-RYf4ER9bpbr_LEQ7jfqWqwb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+7th+International+Conference+on+Computer+and+Knowledge+Engineering+%28ICCKE%29&rft.atitle=Inferring+gene+regulatory+network+using+path+consistency+algorithm+based+on+conditional+mutual+information+and+genetic+algorithm&rft.au=Iranmanesh%2C+Sima&rft.au=Sattari-Naeini%2C+Vahid&rft.au=Ghavami%2C+Behnam&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=98&rft.epage=103&rft_id=info:doi/10.1109%2FICCKE.2017.8167936&rft.externalDocID=8167936