Regularization Parameter-Free Convolutional Sparse Coding via Projections Onto The ℓ1-Ball and The Discrepancy Principle
Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's...
Saved in:
| Published in: | 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 6 |
|---|---|
| Main Author: | |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.09.2018
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's regularization parameter greatly influences the quality of the reconstructed image. Results for an automatic and sensible selection of this parameter are very limited for the CSC / CBPDN case.In this paper we propose a regularization parameter-free method to solve the CSC problem via its projection onto the ℓ 1 -Ball formulation coupled with a warm-start like strategy, which, driven by the Morozov's discrepancy principle, adaptively increases/decreases its constrain at each major iteration. While the time performance of our proposed method is slower than that measured when solving CSC for a fixed regularization parameter, our computational results also show that our method's reconstruction quality is, in average, very close (within 0.16 SNR, 0.16 PSNR, 0.003 SSIM) to that obtained when the regularization parameter for CBPDN is selected to produce the best (SNR) quality result. |
|---|---|
| AbstractList | Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's regularization parameter greatly influences the quality of the reconstructed image. Results for an automatic and sensible selection of this parameter are very limited for the CSC / CBPDN case.In this paper we propose a regularization parameter-free method to solve the CSC problem via its projection onto the ℓ 1 -Ball formulation coupled with a warm-start like strategy, which, driven by the Morozov's discrepancy principle, adaptively increases/decreases its constrain at each major iteration. While the time performance of our proposed method is slower than that measured when solving CSC for a fixed regularization parameter, our computational results also show that our method's reconstruction quality is, in average, very close (within 0.16 SNR, 0.16 PSNR, 0.003 SSIM) to that obtained when the regularization parameter for CBPDN is selected to produce the best (SNR) quality result. |
| Author | Rodriguez, Paul |
| Author_xml | – sequence: 1 givenname: Paul surname: Rodriguez fullname: Rodriguez, Paul organization: Department of Electrical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru |
| BookMark | eNotkEFOwzAURI0EC1o4AGLjCyTYTZw4SwgUkIIa0eyrH-enGLl25KSV2jU34IachAa6GmmeZqSZCTm3ziIhN5yFnLPs7q1YluGMcRlKwZNMijMy4SKSiYjTNLkkh3dcbw14fYBBO0tL8LDBAX0w94g0d3bnzHZEYOiyA9-PZqPtmu400NK7T1Qj7unCDo5WH0h_vr558ADGULDNn_Ooe-WxA6v2x4i2SncGr8hFC6bH65NOSTV_qvKXoFg8v-b3RaAzNgSctUpFKWeSsbiJ2-y4omUSk0a0USNEHQETCqBlNY9roWYjAYlpBoxjkkRTcvtfqxFx1Xm9Ab9fnd6IfgHuw1wE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/MLSP.2018.8516985 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1538654776 9781538654774 |
| EndPage | 6 |
| ExternalDocumentID | 8516985 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-10fcc37108004d4f9169f08e6d5f3d55b3a05caaf0b14b5c2e6d5a8e79a01e663 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:39:05 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-10fcc37108004d4f9169f08e6d5f3d55b3a05caaf0b14b5c2e6d5a8e79a01e663 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8516985 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Sept. |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) |
| PublicationTitleAbbrev | MLSP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6764495 |
| Snippet | Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Convolution Convolutional codes Convolutional sparse coding Encoding Estimation Image coding Image reconstruction Lasso Morozov's discrepancy principle Signal to noise ratio |
| Title | Regularization Parameter-Free Convolutional Sparse Coding via Projections Onto The ℓ1-Ball and The Discrepancy Principle |
| URI | https://ieeexplore.ieee.org/document/8516985 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4ywMjbp04TpyVR8UAJaIdulVnx5GCqrRK0w7M_AP-Ib8E27WKkFjYrPNLurPufL7vfAhdgwx4ooGRnKWCRFowImUeEVAQshgkyFi5YhPJaCSm0zRroZtdLozW2oHPdN82XSw_X6i1fSobCBvUEbyN2kkSb3O1fKAyoOng-WmcWayW6PtxvwqmOHsxPPjfToeo95N4h7OdSTlCLV110furqxdf-4xJnIEFVBl-kGGtNTZTN_78wByPl8ZTtUS7AN6UYNd7c3iraoVfqmaBzcnAXx-fAbmF-RxDlTvKfWkUiLFNRtmaKf4Fvocmw4fJ3SPxJRNImdLG6NRCKZZY3CCN8qgwd7-0oELHOS9YzrlkQLkCKKgMIslVaHtA6CQFGmhz-ThGnWpR6ROEQ-MaMp4WoVJxZPgDUplRBdWB8YBkAKeoa9k2W24_xZh5jp39TT5H-1YyW3DWBeo09Vpfoj21acpVfeUk-Q3uwKX1 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QTfSkBoxve_BooUv30b36IBoBN8KBG5l2u8kaspBl4eDZf-A_9JfYlgZj4sXbZraPZNrMdDrf9EPoGoQXRAoYSVnMia84I0KkPgEJHRaCABFKSzYRDQZ8PI6TGrrZ1MIopSz4TLXMp83lpzO5NFdlbW6SOjzYQtuGOctVa7lUpUfjdr83TAxai7dcy1-UKdZjdPf_N9cBav6U3uFk41QOUU0VDfT-ahnjS1cziRMwkCqtEdItlcK668rtIJji4VzHqkZoBsCrHMx4bxZxVSzwS1HNsN4b-Ovj0yO3MJ1iKFIruc-1CdHeSZtb3cXdwTfRqPswunskjjSB5DGttFXNpGSRQQ5SP_UzffqLM8pVmAYZS4NAMKCBBMio8HwRyI75A1xFMVBP6ePHEaoXs0IdI9zRwSEL4qwjZehr_YCQulVGladjIOHBCWoYtU3m62cxJk5jp3-Lr9Du46jfm_SeBs9naM-s0hqqdY7qVblUF2hHrqp8UV7aVf0GvJCpPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+28th+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=Regularization+Parameter-Free+Convolutional+Sparse+Coding+via+Projections+Onto+The+%E2%84%931-Ball+and+The+Discrepancy+Principle&rft.au=Rodriguez%2C+Paul&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2018.8516985&rft.externalDocID=8516985 |