Regularization Parameter-Free Convolutional Sparse Coding via Projections Onto The ℓ1-Ball and The Discrepancy Principle

Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP) pp. 1 - 6
Main Author: Rodriguez, Paul
Format: Conference Proceeding
Language:English
Published: IEEE 01.09.2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's regularization parameter greatly influences the quality of the reconstructed image. Results for an automatic and sensible selection of this parameter are very limited for the CSC / CBPDN case.In this paper we propose a regularization parameter-free method to solve the CSC problem via its projection onto the ℓ 1 -Ball formulation coupled with a warm-start like strategy, which, driven by the Morozov's discrepancy principle, adaptively increases/decreases its constrain at each major iteration. While the time performance of our proposed method is slower than that measured when solving CSC for a fixed regularization parameter, our computational results also show that our method's reconstruction quality is, in average, very close (within 0.16 SNR, 0.16 PSNR, 0.003 SSIM) to that obtained when the regularization parameter for CBPDN is selected to produce the best (SNR) quality result.
AbstractList Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising (CBPDN), in which an image is represented as a sum over a set of convolutions of coefficient maps. When the input image is noisy, CBPDN's regularization parameter greatly influences the quality of the reconstructed image. Results for an automatic and sensible selection of this parameter are very limited for the CSC / CBPDN case.In this paper we propose a regularization parameter-free method to solve the CSC problem via its projection onto the ℓ 1 -Ball formulation coupled with a warm-start like strategy, which, driven by the Morozov's discrepancy principle, adaptively increases/decreases its constrain at each major iteration. While the time performance of our proposed method is slower than that measured when solving CSC for a fixed regularization parameter, our computational results also show that our method's reconstruction quality is, in average, very close (within 0.16 SNR, 0.16 PSNR, 0.003 SSIM) to that obtained when the regularization parameter for CBPDN is selected to produce the best (SNR) quality result.
Author Rodriguez, Paul
Author_xml – sequence: 1
  givenname: Paul
  surname: Rodriguez
  fullname: Rodriguez, Paul
  organization: Department of Electrical Engineering, Pontificia Universidad Católica del Perú, Lima, Peru
BookMark eNotkEFOwzAURI0EC1o4AGLjCyTYTZw4SwgUkIIa0eyrH-enGLl25KSV2jU34IachAa6GmmeZqSZCTm3ziIhN5yFnLPs7q1YluGMcRlKwZNMijMy4SKSiYjTNLkkh3dcbw14fYBBO0tL8LDBAX0w94g0d3bnzHZEYOiyA9-PZqPtmu400NK7T1Qj7unCDo5WH0h_vr558ADGULDNn_Ooe-WxA6v2x4i2SncGr8hFC6bH65NOSTV_qvKXoFg8v-b3RaAzNgSctUpFKWeSsbiJ2-y4omUSk0a0USNEHQETCqBlNY9roWYjAYlpBoxjkkRTcvtfqxFx1Xm9Ab9fnd6IfgHuw1wE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MLSP.2018.8516985
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538654776
9781538654774
EndPage 6
ExternalDocumentID 8516985
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-10fcc37108004d4f9169f08e6d5f3d55b3a05caaf0b14b5c2e6d5a8e79a01e663
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:05 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-10fcc37108004d4f9169f08e6d5f3d55b3a05caaf0b14b5c2e6d5a8e79a01e663
PageCount 6
ParticipantIDs ieee_primary_8516985
PublicationCentury 2000
PublicationDate 2018-Sept.
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sept.
PublicationDecade 2010
PublicationTitle 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
PublicationTitleAbbrev MLSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6764495
Snippet Given a set of dictionary filters, the most widely used formulation of the convolutional sparse coding (CSC) problem is convolutional basis pursuit denoising...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Convolution
Convolutional codes
Convolutional sparse coding
Encoding
Estimation
Image coding
Image reconstruction
Lasso
Morozov's discrepancy principle
Signal to noise ratio
Title Regularization Parameter-Free Convolutional Sparse Coding via Projections Onto The ℓ1-Ball and The Discrepancy Principle
URI https://ieeexplore.ieee.org/document/8516985
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4ywMjbp04TpyVR8UAJaIdulVnx5GCqrRK0w7M_AP-Ib8E27WKkFjYrPNLurPufL7vfAhdgwx4ooGRnKWCRFowImUeEVAQshgkyFi5YhPJaCSm0zRroZtdLozW2oHPdN82XSw_X6i1fSobCBvUEbyN2kkSb3O1fKAyoOng-WmcWayW6PtxvwqmOHsxPPjfToeo95N4h7OdSTlCLV110furqxdf-4xJnIEFVBl-kGGtNTZTN_78wByPl8ZTtUS7AN6UYNd7c3iraoVfqmaBzcnAXx-fAbmF-RxDlTvKfWkUiLFNRtmaKf4Fvocmw4fJ3SPxJRNImdLG6NRCKZZY3CCN8qgwd7-0oELHOS9YzrlkQLkCKKgMIslVaHtA6CQFGmhz-ThGnWpR6ROEQ-MaMp4WoVJxZPgDUplRBdWB8YBkAKeoa9k2W24_xZh5jp39TT5H-1YyW3DWBeo09Vpfoj21acpVfeUk-Q3uwKX1
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QTfSkBoxve_BooUv30b36IBoBN8KBG5l2u8kaspBl4eDZf-A_9JfYlgZj4sXbZraPZNrMdDrf9EPoGoQXRAoYSVnMia84I0KkPgEJHRaCABFKSzYRDQZ8PI6TGrrZ1MIopSz4TLXMp83lpzO5NFdlbW6SOjzYQtuGOctVa7lUpUfjdr83TAxai7dcy1-UKdZjdPf_N9cBav6U3uFk41QOUU0VDfT-ahnjS1cziRMwkCqtEdItlcK668rtIJji4VzHqkZoBsCrHMx4bxZxVSzwS1HNsN4b-Ovj0yO3MJ1iKFIruc-1CdHeSZtb3cXdwTfRqPswunskjjSB5DGttFXNpGSRQQ5SP_UzffqLM8pVmAYZS4NAMKCBBMio8HwRyI75A1xFMVBP6ePHEaoXs0IdI9zRwSEL4qwjZehr_YCQulVGladjIOHBCWoYtU3m62cxJk5jp3-Lr9Du46jfm_SeBs9naM-s0hqqdY7qVblUF2hHrqp8UV7aVf0GvJCpPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+28th+International+Workshop+on+Machine+Learning+for+Signal+Processing+%28MLSP%29&rft.atitle=Regularization+Parameter-Free+Convolutional+Sparse+Coding+via+Projections+Onto+The+%E2%84%931-Ball+and+The+Discrepancy+Principle&rft.au=Rodriguez%2C+Paul&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FMLSP.2018.8516985&rft.externalDocID=8516985