Unsupervised global optimization: applications on classification of handwritten digits and visual evoked potentials
The authors discuss the optical recognition of handwritten unconnected numerals and visual evoked potential (VEP) classification using two neural network learning paradigms. The first is an unsupervised approach, trained by the combinatorial optimization routine ALOPEX, while the second method uses...
Saved in:
| Published in: | IEEE International Conference on Systems, Man and Cybernetics, 1992 pp. 381 - 386 vol.1 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
1992
|
| Subjects: | |
| ISBN: | 0780307208, 9780780307209 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The authors discuss the optical recognition of handwritten unconnected numerals and visual evoked potential (VEP) classification using two neural network learning paradigms. The first is an unsupervised approach, trained by the combinatorial optimization routine ALOPEX, while the second method uses the backpropagation algorithm. The unsupervised ALOPEX trained system classifies 1000 training digits to an accuracy of 86.3%, and 500 generalizing characters 86.0% accurately. This compares to 99.8% and 93% for a network trained with the supervised backpropagation algorithm. The system was used to cluster the VEPs of normal and multiple sclerosis (MS) subjects. The method demonstrates two distinct groups of subjects, which when histogrammed illustrate that they largely correspond to the MS and control subject groups. A suitable threshold can be chosen so that the recognizer chooses no false negatives.< > |
|---|---|
| AbstractList | The authors discuss the optical recognition of handwritten unconnected numerals and visual evoked potential (VEP) classification using two neural network learning paradigms. The first is an unsupervised approach, trained by the combinatorial optimization routine ALOPEX, while the second method uses the backpropagation algorithm. The unsupervised ALOPEX trained system classifies 1000 training digits to an accuracy of 86.3%, and 500 generalizing characters 86.0% accurately. This compares to 99.8% and 93% for a network trained with the supervised backpropagation algorithm. The system was used to cluster the VEPs of normal and multiple sclerosis (MS) subjects. The method demonstrates two distinct groups of subjects, which when histogrammed illustrate that they largely correspond to the MS and control subject groups. A suitable threshold can be chosen so that the recognizer chooses no false negatives.< > |
| Author | Micheli-Tzanakou, E. Dasey, T.J. |
| Author_xml | – sequence: 1 givenname: E. surname: Micheli-Tzanakou fullname: Micheli-Tzanakou, E. organization: Dept. of Biomed. Eng., Rutgers Univ., Piscataway, NJ, USA – sequence: 2 givenname: T.J. surname: Dasey fullname: Dasey, T.J. organization: Dept. of Biomed. Eng., Rutgers Univ., Piscataway, NJ, USA |
| BookMark | eNotkM9OAjEYxJuoiYI8gJ76AmD_LNvWm9kokmA8iGfyQb9idWk324LRp7cR5jKZmeR3mAE5DzEgITecTThn5m7evL00E26MmAjFVTU9IwOmNJNMCaYvySilT1ZUTZkx5oqk95D2HfYHn9DSbRvX0NLYZb_zv5B9DPcUuq71m_-QaAx000JK3p0qGh39gGC_e58zBmr91udES0MLc19oeIhfhd3FMmcPbbomF64Yjk4-JMunx2XzPF68zubNw2LstcnjjUPpRK01aolcaV6h0o5Lu-YIlgsH0jlma2FVBRXUtWFG1VgDTGXFBMghuT1iPSKuut7voP9ZHV-Rf9BOXgk |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICSMC.1992.271745 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 386 vol.1 |
| ExternalDocumentID | 271745 |
| GroupedDBID | 6IE 6IK 6IL AAJGR AAWTH ACGHX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL |
| ID | FETCH-LOGICAL-i89t-cfe3f2688e83e17814e78f13db1ead12fa3ff0d62d74a4a6690976e6aa53402a3 |
| IEDL.DBID | RIE |
| ISBN | 0780307208 9780780307209 |
| IngestDate | Tue Aug 26 21:50:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i89t-cfe3f2688e83e17814e78f13db1ead12fa3ff0d62d74a4a6690976e6aa53402a3 |
| ParticipantIDs | ieee_primary_271745 |
| PublicationCentury | 1900 |
| PublicationDate | 19920000 |
| PublicationDateYYYYMMDD | 1992-01-01 |
| PublicationDate_xml | – year: 1992 text: 19920000 |
| PublicationDecade | 1990 |
| PublicationTitle | IEEE International Conference on Systems, Man and Cybernetics, 1992 |
| PublicationTitleAbbrev | ICSMC |
| PublicationYear | 1992 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000450999 |
| Score | 1.316111 |
| Snippet | The authors discuss the optical recognition of handwritten unconnected numerals and visual evoked potential (VEP) classification using two neural network... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 381 |
| SubjectTerms | Artificial neural networks Backpropagation algorithms Biomedical engineering Character recognition Feature extraction Medical diagnostic imaging Multiple sclerosis Neural networks Pattern recognition System testing |
| Title | Unsupervised global optimization: applications on classification of handwritten digits and visual evoked potentials |
| URI | https://ieeexplore.ieee.org/document/271745 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmDiVcRbHljTJnYcO6wVFUhQVaKgbpXjB4oQSdUk5e9zdkIBiYUtvuGU2Of4--5lhK6VVpkUTAZGJnEQswz2XJikgSaMCC1TyXz0_OWBTyZiPk-nXZ9tXwtjjPHJZ2bgHn0sX5eqca6yIQHuEbNttM05b0u1Nu4UQCYO63hiLpzhklB0_XW-xmkX1IzCdHg_enocuUo9MmiV_rpcxZ8t471_vdU-6n_X6OHp5vQ5QFumOELVc1E1S7f9K6Nx2-wDl_BXeO_KLW_wz4g1LgusHHx2-UJehEuLnS_9Y5XXgKaxzl_zusIgwaCzAW1mXb6B7mVZuzwjMN4-mo1vZ6O7oLtWIchFWgfKGmpJIoQR1ESu45XhwkZUZxFYVUSspNaGOiGaxzKWCdBngCwmkZJRIJuSHqNeURbmBOHMwvoz-E5lgZdZknGqKA9ZlsE4kvIUHbrpWizbxhmLdqbO_pSeo902E9Z5Ny5Qr1415hLtqHWdV6srv9ifXrSsLA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG90mujJrxm_7cErGxQKxevissVtWeI0uy2lH4YYYRkw_31fC05NvHij7_AC7aN9X79fEboTUiScUe4oHgZOQBP459wwdiShhEkec2qr5y-jaDJh83k8bXi2LRZGKWWbz1THPNpavsxFZVJlXQKxR0C30Q4NAuLVYK1NQgV8E-Pt2NCcGdMlLmsYdr7GcVPW9Ny4O-w9jXsGq0c6tdpf16vY06V_8K_3OkTtb5Qenm7OnyO0pbITVDxnRbU0G0ChJK7pPnAO-8J7A7i8xz9r1jjPsDAOtOkYsiKca2yy6R-rtAR_Gsv0NS0LDBIMOivQptb5G-he5qXpNALzbaNZ_2HWGzjNxQpOyuLSEVr5moSMKeYrz3BeqYhpz5eJB3blEc19rV0ZEhkFPOAhBNDgtKiQc-pDuMn9U9TK8kydIZxosAAK3yk0RGaaJJEv_MilSQJjj_NzdGyma7GsqTMW9Uxd_Cm9RXuD2Xi0GA0nj5dov-6LNbmOK9QqV5W6RrtiXabF6sYu_Cd-Lq9z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Systems%2C+Man+and+Cybernetics%2C+1992&rft.atitle=Unsupervised+global+optimization%3A+applications+on+classification+of+handwritten+digits+and+visual+evoked+potentials&rft.au=Micheli-Tzanakou%2C+E.&rft.au=Dasey%2C+T.J.&rft.date=1992-01-01&rft.pub=IEEE&rft.isbn=9780780307209&rft.spage=381&rft.epage=386+vol.1&rft_id=info:doi/10.1109%2FICSMC.1992.271745&rft.externalDocID=271745 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780307209/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780307209/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780307209/sc.gif&client=summon&freeimage=true |

