A tensor product formulation of Strassen's matrix multiplication algorithm with memory reduction

A programming methodology based on tensor products has been used for designing and implementing block recursive algorithms for parallel and vector multiprocessors. A previous tensor product formulation of Strassen's matrix multiplication algorithm requires working arrays of size O(7/sup n/) for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel Processing Symposium, 7th International (IPPS '93 s. 582 - 588
Hlavní autoři: Kumar, B., Huang, C.-H., Johnson, R.W., Sadayappan, P.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE Comput. Soc. Press 1993
Témata:
ISBN:9780818634420, 0818634421
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A programming methodology based on tensor products has been used for designing and implementing block recursive algorithms for parallel and vector multiprocessors. A previous tensor product formulation of Strassen's matrix multiplication algorithm requires working arrays of size O(7/sup n/) for multiplying 2/sup n/*2/sup n/ matrices. The authors present a modified tensor product formulation of Strassen's algorithm in which the size of working arrays can be reduced to O(4/sup n/). The modified formulation exhibits sufficient parallel and vector operations for efficient implementation. Performance results on the Cray Y-MP are presented.< >
ISBN:9780818634420
0818634421
DOI:10.1109/IPPS.1993.262814