A tensor product formulation of Strassen's matrix multiplication algorithm with memory reduction
A programming methodology based on tensor products has been used for designing and implementing block recursive algorithms for parallel and vector multiprocessors. A previous tensor product formulation of Strassen's matrix multiplication algorithm requires working arrays of size O(7/sup n/) for...
Uloženo v:
| Vydáno v: | Parallel Processing Symposium, 7th International (IPPS '93 s. 582 - 588 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE Comput. Soc. Press
1993
|
| Témata: | |
| ISBN: | 9780818634420, 0818634421 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A programming methodology based on tensor products has been used for designing and implementing block recursive algorithms for parallel and vector multiprocessors. A previous tensor product formulation of Strassen's matrix multiplication algorithm requires working arrays of size O(7/sup n/) for multiplying 2/sup n/*2/sup n/ matrices. The authors present a modified tensor product formulation of Strassen's algorithm in which the size of working arrays can be reduced to O(4/sup n/). The modified formulation exhibits sufficient parallel and vector operations for efficient implementation. Performance results on the Cray Y-MP are presented.< > |
|---|---|
| ISBN: | 9780818634420 0818634421 |
| DOI: | 10.1109/IPPS.1993.262814 |

