Parallel and distributed systems for constructive neural network learning
A constructive learning algorithm dynamically creates a problem-specific neural network architecture rather than learning on a pre-specified architecture. The authors propose a parallel version of their recently presented constructive neural network learning algorithm. Parallelization provides a com...
Uloženo v:
| Vydáno v: | High-Performance Distributed Computing, 2nd International Symposium (HPDC-2 s. 174 - 186 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE Comput. Soc. Press
1993
|
| Témata: | |
| ISBN: | 0818639008, 9780818639005 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A constructive learning algorithm dynamically creates a problem-specific neural network architecture rather than learning on a pre-specified architecture. The authors propose a parallel version of their recently presented constructive neural network learning algorithm. Parallelization provides a computational speedup by a factor of O(t) where t is the number of training examples. Distributed and parallel implementations under p4 using a network of workstations and a Touchstone DELTA are examined. Experimental results indicate that algorithm parallelization may result not only in improved computational time, but also in better prediction quality.< > |
|---|---|
| ISBN: | 0818639008 9780818639005 |
| DOI: | 10.1109/HPDC.1993.263844 |

