An optimal randomized parallel algorithm for finding connected components in a graph

We present a parallel randomized algorithm for finding the connected components of an undirected graph. Our algorithm takes T = O(log (n)) time and p = O(m+n/(log(n) processors, where m = number of edges and n = number of vertices. This algorithm improves the results of Cole and Vishkin1, which use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:27th Annual Symposium on Foundations of Computer Science (sfcs 1986) s. 492 - 501
Hlavní autor: Gazit, Hillel
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.1986
Témata:
ISBN:0818607408, 9780818607400
ISSN:0272-5428
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a parallel randomized algorithm for finding the connected components of an undirected graph. Our algorithm takes T = O(log (n)) time and p = O(m+n/(log(n) processors, where m = number of edges and n = number of vertices. This algorithm improves the results of Cole and Vishkin1, which use O(log (n)·log (log (n))· log (log (log (n))) time. Our algorithm is Optimal in the sense that the product P·T is a linear function of the input size. The algorithm requires O(m + n) space which is the input size, so it is Optimal in space as well.
ISBN:0818607408
9780818607400
ISSN:0272-5428
DOI:10.1109/SFCS.1986.9