Signal Processing Models

This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector space...

Full description

Saved in:
Bibliographic Details
Published in:Digital Signal Processing with Kernel Methods pp. 97 - 164
Main Authors: Rojo-Álvarez, José Luis, Martínez-Ramón, Manel, Muñoz-Mar&iacute, Jordi, Camps-Valls, Gustau
Format: Book Chapter
Language:English
Published: Chichester, UK Wiley 2018
John Wiley & Sons, Ltd
Edition:1
Series:Wiley - IEEE
Subjects:
ISBN:9781118611791, 1118611799
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector spaces and basis. It discusses the general signal model and introduces specific signal models for the most common problems in DSP; namely, nonparametric spectral estimation, system identification, interpolation, deconvolution, and array processing. The chapter then introduces two signal models for system identification that will be used in the following chapters when dealing with kernel functions; namely, the autoregressive exogenous (ARX) signal model and a particular instantiation of an autoregressive moving average model (ARMA) filter called the γ‐filter. It further presents the state‐space models and signal models which are used for recursion in many DSP applications. Finally, the chapter discusses the main aspects of the signal models encountered in DSP.
AbstractList This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector spaces and basis. It discusses the general signal model and introduces specific signal models for the most common problems in DSP; namely, nonparametric spectral estimation, system identification, interpolation, deconvolution, and array processing. The chapter then introduces two signal models for system identification that will be used in the following chapters when dealing with kernel functions; namely, the autoregressive exogenous (ARX) signal model and a particular instantiation of an autoregressive moving average model (ARMA) filter called the γ‐filter. It further presents the state‐space models and signal models which are used for recursion in many DSP applications. Finally, the chapter discusses the main aspects of the signal models encountered in DSP.
This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector spaces and basis. It discusses the general signal model and introduces specific signal models for the most common problems in DSP; namely, nonparametric spectral estimation, system identification, interpolation, deconvolution, and array processing. The chapter then introduces two signal models for system identification that will be used in the following chapters when dealing with kernel functions; namely, the autoregressive exogenous (ARX) signal model and a particular instantiation of an autoregressive moving average model (ARMA) filter called the γ‐filter. It further presents the state‐space models and signal models which are used for recursion in many DSP applications. Finally, the chapter discusses the main aspects of the signal models encountered in DSP.
Author Muñoz-Mar&iacute, Jordi
Rojo-Álvarez, José Luis
Camps-Valls, Gustau
Martínez-Ramón, Manel
Author_xml – sequence: 1
  givenname: José Luis
  surname: Rojo-Álvarez
  fullname: Rojo-Álvarez, José Luis
– sequence: 2
  givenname: Manel
  surname: Martínez-Ramón
  fullname: Martínez-Ramón, Manel
– sequence: 3
  givenname: Jordi
  surname: Muñoz-Mar&iacute
  fullname: Muñoz-Mar&iacute, Jordi
– sequence: 4
  givenname: Gustau
  surname: Camps-Valls
  fullname: Camps-Valls, Gustau
  organization: University of Valencia, Spain
BookMark eNpVj01LAzEQhiMqqHXv9tY_sDqTSZvJUYpf0FLB3kOyO63RZQPmIP57t6wIZRiG94Vn4LlSZ33uRakpwi0C6DtnGRHZwpyHqnmnE1Uddaf_eYFoHV6oqpQPAEAHrLW9VDdvad-Hbvb6lRspJfX72Tq30pVrdb4LXZHq707U9vFhu3yuV5unl-X9qk4LoLqNxBqQgmkpOHaxCWBQB9iZ2LjgomkbaxE4EJFxHI0JHFgMz1nbKDRROL79Tp38eIk5fxaP4A-C_kjGD4KHHZjpyCQR8SPB2g2D9As4UkrN
ContentType Book Chapter
Copyright 2018 Wiley
2018 John Wiley & Sons Ltd.
Copyright_xml – notice: 2018 Wiley
– notice: 2018 John Wiley & Sons Ltd.
DOI 10.1002/9781118705810.ch3
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781118705810
1118705815
1118705823
9781118705834
9781118705827
1118705831
Edition 1
EndPage 164
ExternalDocumentID 10.1002/9781118705810.ch3
8292921
Genre chapter
GroupedDBID 38.
3XM
6TE
AABBV
AAJKE
ABARN
ABQPQ
ACHMX
ADVEM
AERYV
AFOJC
AFPKT
AJFER
AK3
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BEFXN
BFFAM
BGNUA
BKCNH
BKEBE
BPEOZ
CZZ
DMMDR
DPMII
DREPA
ECNEQ
ERSLE
GEOUK
IFKZM
IPJKO
JFSCD
KJBCJ
LQKAK
LWYJN
LYPXV
MTLMD
OCL
OHILO
OODEK
W1A
WZG
YPLAZ
ZEEST
ABAZT
ACLGV
AHWGJ
WIIVT
ID FETCH-LOGICAL-i603-db382013a4d3a989bca0412a0f4bc9a9b4dc77108a333498b44a8a8e485827be3
ISBN 9781118611791
1118611799
IngestDate Sat Nov 15 22:30:55 EST 2025
Fri Nov 11 10:38:44 EST 2022
IsPeerReviewed false
IsScholarly false
Keywords Correlation
Signal processing algorithms
Estimation
Signal processing
Hilbert space
Data models
Kernel
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i603-db382013a4d3a989bca0412a0f4bc9a9b4dc77108a333498b44a8a8e485827be3
PageCount 68
ParticipantIDs ieee_books_8292921
wiley_ebooks_10_1002_9781118705810_ch3_ch3
PublicationCentury 2000
PublicationDate 2018
2018-01-05
PublicationDateYYYYMMDD 2018-01-01
2018-01-05
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationSeriesTitle Wiley - IEEE
PublicationTitle Digital Signal Processing with Kernel Methods
PublicationYear 2018
Publisher Wiley
John Wiley & Sons, Ltd
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Ltd
SSID ssj0001908227
ssib037090628
ssib030725431
Score 1.5246171
Snippet This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing...
This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It...
SourceID wiley
ieee
SourceType Publisher
StartPage 97
SubjectTerms autoregressive exogenous signal model
autoregressive moving average model
digital signal processing
Hilbert spaces
kernel functions
kernel‐based signal processing algorithms
vector spaces
Title Signal Processing Models
URI http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8292921
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118705810.ch3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZg4QBcKA-1PKo9wIWVRTbOru1roQ9RKAgW1FtkO04bFJxqs1tV_fXM2G6y2_bCgUOsZGRF9szEGY9nviHkDULGldr73aDJDCYrG86plRMQidagZaHYBD86EsfH8lv06ba-nAB3TlxcyLP_KmqggbAxdfYfxN29FAhwD0KHFsQO7TWLeN33GgNcTrAKyOhHdYJmZkwD6Byuh3bufCgrlo3uo9yb3w3FE3Mxrs_VPPiUPzVtOEQffV5WXVdEHfDkj85e0u-gTfCww0JAsHJ2JcoQdEr9OXvLdtyiqgsLN80l_YLx3JFeKbNcRBc-qOnqaUhLf6m6Dk57zPBarmr2zblhQbc6jBFZbNu4KtJRt5eNjo2xuObY8B3XdruwLIspQtiNb137A5Zs7MeTiQCiOWX9j64LPxQpGIWIPnAXjN8Bube_-_Xn4dUqBIueBwjonnmCWM6i99xhlfiU-7JTcUAygod1A7w6P0_S9zcGFOv4rO-GvDkze0weYYrLEHNPYMAb5I51T8jDFWjKp2QzcHnYc3kYuPyMzPZ2Zx8OaKyiQatpwmihGRp5TGUFU1JIbRRCrKmkzLSRSuqsgG8TPlTFGMuk0FmmhBI2ExORcm3ZczJwjbObZMiTgiWpkSWeXQvLRTEdG6tL2BPLpFDlFtnAieWo_W0embxF3vlp5jaQA0x2mq-xJQe24PXitje8JA969XhFBov50r4m9835omrn21F6fwEU3VAf
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Digital+Signal+Processing+with+Kernel+Methods&rft.au=Rojo-%C3%81lvarez%2C+Jos%C3%A9+Luis&rft.au=Mart%C3%ADnez-Ram%C3%B3n%2C+Manel&rft.au=Mu%26amp%3Bntilde%3Boz-Mar%26amp%3Biacute%2C+Jordi&rft.au=Camps-Valls%2C+Gustau&rft.atitle=Signal+Processing+Models&rft.series=Wiley+-+IEEE&rft.date=2018-01-01&rft.pub=Wiley&rft.isbn=9781118611791&rft_id=info:doi/10.1002%2F9781118705810.ch3&rft.externalDocID=8292921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118611791/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118611791/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118611791/sc.gif&client=summon&freeimage=true