Signal Processing Models
This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector space...
Saved in:
| Published in: | Digital Signal Processing with Kernel Methods pp. 97 - 164 |
|---|---|
| Main Authors: | , , , |
| Format: | Book Chapter |
| Language: | English |
| Published: |
Chichester, UK
Wiley
2018
John Wiley & Sons, Ltd |
| Edition: | 1 |
| Series: | Wiley - IEEE |
| Subjects: | |
| ISBN: | 9781118611791, 1118611799 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector spaces and basis. It discusses the general signal model and introduces specific signal models for the most common problems in DSP; namely, nonparametric spectral estimation, system identification, interpolation, deconvolution, and array processing. The chapter then introduces two signal models for system identification that will be used in the following chapters when dealing with kernel functions; namely, the autoregressive exogenous (ARX) signal model and a particular instantiation of an autoregressive moving average model (ARMA) filter called the γ‐filter. It further presents the state‐space models and signal models which are used for recursion in many DSP applications. Finally, the chapter discusses the main aspects of the signal models encountered in DSP. |
|---|---|
| AbstractList | This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector spaces and basis. It discusses the general signal model and introduces specific signal models for the most common problems in DSP; namely, nonparametric spectral estimation, system identification, interpolation, deconvolution, and array processing. The chapter then introduces two signal models for system identification that will be used in the following chapters when dealing with kernel functions; namely, the autoregressive exogenous (ARX) signal model and a particular instantiation of an autoregressive moving average model (ARMA) filter called the γ‐filter. It further presents the state‐space models and signal models which are used for recursion in many DSP applications. Finally, the chapter discusses the main aspects of the signal models encountered in DSP. This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It presents the basic concepts of signal Hilbert spaces, noise, and optimization. The chapter provides a brief overview of vector spaces and basis. It discusses the general signal model and introduces specific signal models for the most common problems in DSP; namely, nonparametric spectral estimation, system identification, interpolation, deconvolution, and array processing. The chapter then introduces two signal models for system identification that will be used in the following chapters when dealing with kernel functions; namely, the autoregressive exogenous (ARX) signal model and a particular instantiation of an autoregressive moving average model (ARMA) filter called the γ‐filter. It further presents the state‐space models and signal models which are used for recursion in many DSP applications. Finally, the chapter discusses the main aspects of the signal models encountered in DSP. |
| Author | Muñoz-Mar&iacute, Jordi Rojo-Álvarez, José Luis Camps-Valls, Gustau Martínez-Ramón, Manel |
| Author_xml | – sequence: 1 givenname: José Luis surname: Rojo-Álvarez fullname: Rojo-Álvarez, José Luis – sequence: 2 givenname: Manel surname: Martínez-Ramón fullname: Martínez-Ramón, Manel – sequence: 3 givenname: Jordi surname: Muñoz-Mar&iacute fullname: Muñoz-Mar&iacute, Jordi – sequence: 4 givenname: Gustau surname: Camps-Valls fullname: Camps-Valls, Gustau organization: University of Valencia, Spain |
| BookMark | eNpVj01LAzEQhiMqqHXv9tY_sDqTSZvJUYpf0FLB3kOyO63RZQPmIP57t6wIZRiG94Vn4LlSZ33uRakpwi0C6DtnGRHZwpyHqnmnE1Uddaf_eYFoHV6oqpQPAEAHrLW9VDdvad-Hbvb6lRspJfX72Tq30pVrdb4LXZHq707U9vFhu3yuV5unl-X9qk4LoLqNxBqQgmkpOHaxCWBQB9iZ2LjgomkbaxE4EJFxHI0JHFgMz1nbKDRROL79Tp38eIk5fxaP4A-C_kjGD4KHHZjpyCQR8SPB2g2D9As4UkrN |
| ContentType | Book Chapter |
| Copyright | 2018 Wiley 2018 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2018 Wiley – notice: 2018 John Wiley & Sons Ltd. |
| DOI | 10.1002/9781118705810.ch3 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781118705810 1118705815 1118705823 9781118705834 9781118705827 1118705831 |
| Edition | 1 |
| EndPage | 164 |
| ExternalDocumentID | 10.1002/9781118705810.ch3 8292921 |
| Genre | chapter |
| GroupedDBID | 38. 3XM 6TE AABBV AAJKE ABARN ABQPQ ACHMX ADVEM AERYV AFOJC AFPKT AJFER AK3 ALMA_UNASSIGNED_HOLDINGS AZZ BBABE BEFXN BFFAM BGNUA BKCNH BKEBE BPEOZ CZZ DMMDR DPMII DREPA ECNEQ ERSLE GEOUK IFKZM IPJKO JFSCD KJBCJ LQKAK LWYJN LYPXV MTLMD OCL OHILO OODEK W1A WZG YPLAZ ZEEST ABAZT ACLGV AHWGJ WIIVT |
| ID | FETCH-LOGICAL-i603-db382013a4d3a989bca0412a0f4bc9a9b4dc77108a333498b44a8a8e485827be3 |
| ISBN | 9781118611791 1118611799 |
| IngestDate | Sat Nov 15 22:30:55 EST 2025 Fri Nov 11 10:38:44 EST 2022 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | Correlation Signal processing algorithms Estimation Signal processing Hilbert space Data models Kernel |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-i603-db382013a4d3a989bca0412a0f4bc9a9b4dc77108a333498b44a8a8e485827be3 |
| PageCount | 68 |
| ParticipantIDs | ieee_books_8292921 wiley_ebooks_10_1002_9781118705810_ch3_ch3 |
| PublicationCentury | 2000 |
| PublicationDate | 2018 2018-01-05 |
| PublicationDateYYYYMMDD | 2018-01-01 2018-01-05 |
| PublicationDate_xml | – year: 2018 text: 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationSeriesTitle | Wiley - IEEE |
| PublicationTitle | Digital Signal Processing with Kernel Methods |
| PublicationYear | 2018 |
| Publisher | Wiley John Wiley & Sons, Ltd |
| Publisher_xml | – name: Wiley – name: John Wiley & Sons, Ltd |
| SSID | ssj0001908227 ssib037090628 ssib030725431 |
| Score | 1.5246171 |
| Snippet | This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing... This chapter conveys the ideas from digital signal processing (DSP) to be clearly kept in mind when working on kernel‐based signal processing algorithms. It... |
| SourceID | wiley ieee |
| SourceType | Publisher |
| StartPage | 97 |
| SubjectTerms | autoregressive exogenous signal model autoregressive moving average model digital signal processing Hilbert spaces kernel functions kernel‐based signal processing algorithms vector spaces |
| Title | Signal Processing Models |
| URI | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=8292921 https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118705810.ch3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZg4QBcKA-1PKo9wIWVRTbOru1roQ9RKAgW1FtkO04bFJxqs1tV_fXM2G6y2_bCgUOsZGRF9szEGY9nviHkDULGldr73aDJDCYrG86plRMQidagZaHYBD86EsfH8lv06ba-nAB3TlxcyLP_KmqggbAxdfYfxN29FAhwD0KHFsQO7TWLeN33GgNcTrAKyOhHdYJmZkwD6Byuh3bufCgrlo3uo9yb3w3FE3Mxrs_VPPiUPzVtOEQffV5WXVdEHfDkj85e0u-gTfCww0JAsHJ2JcoQdEr9OXvLdtyiqgsLN80l_YLx3JFeKbNcRBc-qOnqaUhLf6m6Dk57zPBarmr2zblhQbc6jBFZbNu4KtJRt5eNjo2xuObY8B3XdruwLIspQtiNb137A5Zs7MeTiQCiOWX9j64LPxQpGIWIPnAXjN8Bube_-_Xn4dUqBIueBwjonnmCWM6i99xhlfiU-7JTcUAygod1A7w6P0_S9zcGFOv4rO-GvDkze0weYYrLEHNPYMAb5I51T8jDFWjKp2QzcHnYc3kYuPyMzPZ2Zx8OaKyiQatpwmihGRp5TGUFU1JIbRRCrKmkzLSRSuqsgG8TPlTFGMuk0FmmhBI2ExORcm3ZczJwjbObZMiTgiWpkSWeXQvLRTEdG6tL2BPLpFDlFtnAieWo_W0embxF3vlp5jaQA0x2mq-xJQe24PXitje8JA969XhFBov50r4m9835omrn21F6fwEU3VAf |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Digital+Signal+Processing+with+Kernel+Methods&rft.au=Rojo-%C3%81lvarez%2C+Jos%C3%A9+Luis&rft.au=Mart%C3%ADnez-Ram%C3%B3n%2C+Manel&rft.au=Mu%26amp%3Bntilde%3Boz-Mar%26amp%3Biacute%2C+Jordi&rft.au=Camps-Valls%2C+Gustau&rft.atitle=Signal+Processing+Models&rft.series=Wiley+-+IEEE&rft.date=2018-01-01&rft.pub=Wiley&rft.isbn=9781118611791&rft_id=info:doi/10.1002%2F9781118705810.ch3&rft.externalDocID=8292921 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118611791/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118611791/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781118611791/sc.gif&client=summon&freeimage=true |

