A general linear relaxometry model of R1 using imaging data
Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1...
Uloženo v:
| Vydáno v: | Magnetic resonance in medicine Ročník 73; číslo 3; s. 1309 - 1314 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Blackwell Publishing Ltd
01.03.2015
Wiley Subscription Services, Inc BlackWell Publishing Ltd |
| Témata: | |
| ISSN: | 0740-3194, 1522-2594, 1522-2594 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Purpose
The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort.
Methods
Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2*) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps.
Results
The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort.
Conclusion
A single set of global coefficients can be used to relate R1, MT, and R2* across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309–1314, 2015. © 2014 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort.PURPOSEThe longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort.Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps.METHODSMaps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps.The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort.RESULTSThe model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort.A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model.CONCLUSIONA single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Methods Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2*) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. Results The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. Conclusion A single set of global coefficients can be used to relate R1, MT, and R2* across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309–1314, 2015. © 2014 Wiley Periodicals, Inc. The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model. Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Methods Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2*) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. Results The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. Conclusion A single set of global coefficients can be used to relate R1, MT, and R2* across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc. |
| Author | Helms, Gunther Weiskopf, Nikolaus Callaghan, Martina F. Lutti, Antoine Mohammadi, Siawoosh |
| Author_xml | – sequence: 1 givenname: Martina F. surname: Callaghan fullname: Callaghan, Martina F. email: m.callaghan@ucl.ac.uk organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom – sequence: 2 givenname: Gunther surname: Helms fullname: Helms, Gunther organization: MR Research in Neurology and Psychiatry, Department of Cognitive Neurology, University Medical Center, Goettingen, Germany – sequence: 3 givenname: Antoine surname: Lutti fullname: Lutti, Antoine organization: LREN, Department des Neurosciences Cliniques, CHUV, Universite de Lausanne, Lausanne, Switzerland – sequence: 4 givenname: Siawoosh surname: Mohammadi fullname: Mohammadi, Siawoosh organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom – sequence: 5 givenname: Nikolaus surname: Weiskopf fullname: Weiskopf, Nikolaus organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24700606$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkt9PFDEQxxuDkeP0wX_AbOKLLwvt9se2MTEhIGgCGBHD46S7nT2K--Nsd4X77-lxeBGfpsl8vjPfzswe2emHHgl5y-g-o7Q46EK3X8iC0RdkxmRR5IU0YofMaClozpkRu2QvxltKqTGleEV2C1FSqqiakY-H2QJ7DLbNWt-jDVnA1t4PHY5hlXWDwzYbmuySZVP0_SLznV2so7OjfU1eNraN-OYpzsnPk89XR1_ys2-nX48Oz3IvVUlz7RwarLhgsmFCc8YF1w1WTUOdlZWyhS1UgY1j6Qe1cHWlG8mVKBUq7UzN58Ru6sY7XE4VLENyEVYwWA_LIYy2hYAxea9voJ0gIiSq9bUd_dBHMJxVSkkBluoKhBYatOAObGNMLUvuimRuTj5teiRph67Gfkwzed7qWab3N7AY_oDg0lDGU4EPTwXC8HvCOELnY41ta3scpghMpVZMpH0l9P1_6O0whT6NcE1JpbSgJlHv_nW0tfJ3dwk42AB3vsXVNs8orI8C0lHA41HA-eX54yMp8o3CxxHvtwobfoEqeSnh-uIUvl-Xx8cXVxp-8AcPlLq0 |
| CODEN | MRMEEN |
| ContentType | Journal Article |
| Copyright | 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. 2014 |
| Copyright_xml | – notice: 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. – notice: 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. 2014 |
| CorporateAuthor | Lunds universitet Naturvetenskapliga fakulteten Faculty of Science Lund University Medical Radiation Physics, Lund Medicinsk strålningsfysik, Lund |
| CorporateAuthor_xml | – name: Naturvetenskapliga fakulteten – name: Medicinsk strålningsfysik, Lund – name: Medical Radiation Physics, Lund – name: Lund University – name: Faculty of Science – name: Lunds universitet |
| DBID | BSCLL 24P CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| DOI | 10.1002/mrm.25210 |
| DatabaseName | Istex Wiley Online Library Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SWEPUB Lunds universitet full text SwePub Articles SWEPUB Freely available online SWEPUB Lunds universitet SwePub Articles full text |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1314 |
| ExternalDocumentID | oai_portal_research_lu_se_publications_931b6654_a08b_4848_843d_af99c573d2eb PMC4359013 3593948561 24700606 MRM25210 ark_67375_WNG_QW7DDNT8_S |
| Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: MO 2397/1‐1 – fundername: The Wellcome Trust funderid: 091593/Z/10/Z – fundername: Wellcome Trust grantid: 091593/Z/10/Z – fundername: Wellcome Trust grantid: 091593 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z O8X P64 7X8 5PM ADTPV AGCHP AOWAS D8T D95 ZZAVC |
| ID | FETCH-LOGICAL-i5670-8dde9eb3415f148313438febff0da5b6a2a262efd1210c4dcb8f536476e68d9c3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350279900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Wed Nov 05 04:02:58 EST 2025 Thu Aug 21 13:25:43 EDT 2025 Fri Jul 11 07:36:46 EDT 2025 Sat Nov 29 14:27:28 EST 2025 Mon Jul 21 06:00:55 EDT 2025 Wed Jan 22 16:22:00 EST 2025 Sun Sep 21 06:18:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | R2 3T relaxometry MT longitudinal relaxation transverse relaxation PD quantitative water content magnetization transfer T1 T2 R1 |
| Language | English |
| License | Attribution 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i5670-8dde9eb3415f148313438febff0da5b6a2a262efd1210c4dcb8f536476e68d9c3 |
| Notes | ark:/67375/WNG-QW7DDNT8-S Deutsche Forschungsgemeinschaft - No. MO 2397/1-1 ArticleID:MRM25210 istex:0BFC4520888E4FA13AD9302EB1CA571266C5FDFF The Wellcome Trust - No. 091593/Z/10/Z ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Grant sponsor: Deutsche Forschungsgemeinschaft; Grant number: MO 2397/1-1; Grant sponsor: The Wellcome Trust; Grant number: 091593/Z/10/Z. |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25210 |
| PMID | 24700606 |
| PQID | 1655668409 |
| PQPubID | 1016391 |
| PageCount | 6 |
| ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_931b6654_a08b_4848_843d_af99c573d2eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359013 proquest_miscellaneous_1657314100 proquest_journals_1655668409 pubmed_primary_24700606 wiley_primary_10_1002_mrm_25210_MRM25210 istex_primary_ark_67375_WNG_QW7DDNT8_S |
| PublicationCentury | 2000 |
| PublicationDate | March 2015 |
| PublicationDateYYYYMMDD | 2015-03-01 |
| PublicationDate_xml | – month: 03 year: 2015 text: March 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken – name: Oxford, UK |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc BlackWell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc – name: BlackWell Publishing Ltd |
| References | Donahue KM, Burstein D, Manning WJ, Gray ML. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 1994;32:66-76. Kaneoke Y, Furuse M, Inao S, Saso K, Yoshida K, Motegi Y, Mizuno M, Izawa A. Spin-lattice relaxation times of bound water-its determination and implications for tissue discrimination. Magn Reson Imaging 1987;5:415-420. Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, Ooi C, Bullmore ET, Lutti A. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci 2013;7:1-11. Bender B, Klose U. The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain. NMR Biomed 2010;23:1071-1076. Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 2001;45:71-79. Fatouros PP, Marmarou A. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 1999;90:109-115. Helms G, Dathe H, Dechent P. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 2008;59:667-672. Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 2012;32:16095-16105. Helms G, Hagberg GE. Pulsed saturation of the standard two-pool model for magnetization transfer. Part I: the steady state. Concepts Magn Reson 2004;21A:37-49. Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564. Wharton S, Bowtell R. Gradient echo based fiber orientation mapping using r2* and frequency difference measurements. Neuroimage 2013;83:1011-1023. Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 2013:1-13. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851. Kamman RL, Go KG, Brouwer W, Berendsen HJ. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 1988;6:265-274. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462. Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008;60:1396-1407. Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989;10:135-144. Lutti A, Stadler J, Josephs O, Windischberger C, Speck O, Bernarding J, Hutton C, Weiskopf N. Robust and fast whole brain mapping of the RF transmit field B1 at 7T. PLoS One 2012;7:e32379. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407-415. Helms G, Dechent P. Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D FLASH imaging of the human brain at 3T. J Magn Reson Imaging 2009;29:198-204. Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia 1996;17:83-93. Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy. Cereb Cortex 2013;23:2261-2268. Shuter B, Wang SC, Roche J, Briggs G, Pope JM. Relaxivity of Gd-EOB-DTPA in the normal and biliary obstructed guinea pig. J Magn Reson Imaging 1998;8:853-861. Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K, Springer CS. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007;57:308-318. Preibisch C, Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 2009;61:125-135. Li X, Rooney WD, Springer CS. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med 2005;54:1351-1359. Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 1991;17:402-413. Fullerton GD, Potter JL, Dornbluth NC. NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imaging 1982;1:209-226. Helms G, Piringer A. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses. NMR Biomed 2005;18:44-50. Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010;64:177-185. 1991; 17 1996; 17 2009; 61 2013; 23 1987; 5 2013; 83 2008; 59 2013; 7 2005; 26 2001; 45 2012; 32 2007; 57 2009; 29 2012; 109 2010; 23 2010; 64 1989; 10 1982; 1 1988; 6 2010; 257 2004; 56 2004; 21A 2005; 54 2013 2012; 7 1999; 90 2008; 60 2005; 18 1994; 32 1998; 8 20665897 - NMR Biomed. 2010 Nov;23(9):1071-6 23772204 - Front Neurosci. 2013 Jun 10;7:95 19025906 - Magn Reson Med. 2008 Dec;60(6):1396-407 20843991 - Radiology. 2010 Nov;257(2):455-62 19097220 - Magn Reson Med. 2009 Jan;61(1):125-35 3362061 - Magn Reson Med. 1988 Mar;6(3):265-74 11146488 - Magn Reson Med. 2001 Jan;45(1):71-9 23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51 15349868 - Ann Neurol. 2004 Sep;56(3):407-15 19097114 - J Magn Reson Imaging. 2009 Jan;29(1):198-204 6927208 - Magn Reson Imaging. 1982;1(4):209-26 20572139 - Magn Reson Med. 2010 Jul;64(1):177-85 15455467 - NMR Biomed. 2005 Feb;18(1):44-50 23906549 - Neuroimage. 2013 Dec;83:1011-23 8776576 - Glia. 1996 Jun;17(2):83-93 9702887 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):853-61 2547135 - Magn Reson Med. 1989 Apr;10(1):135-44 2062213 - Magn Reson Med. 1991 Feb;17(2):402-13 18306368 - Magn Reson Med. 2008 Mar;59(3):667-72 8084239 - Magn Reson Med. 1994 Jul;32(1):66-76 23756203 - Neuroimage. 2014 Jun;93 Pt 2:176-88 22826609 - Cereb Cortex. 2013 Sep;23(9):2261-8 3431351 - Magn Reson Imaging. 1987;5(6):415-20 17260370 - Magn Reson Med. 2007 Feb;57(2):308-18 23152594 - J Neurosci. 2012 Nov 14;32(46):16095-105 22427831 - PLoS One. 2012;7(3):e32379 16247739 - Magn Reson Med. 2005 Dec;54(6):1351-9 10413163 - J Neurosurg. 1999 Jan;90(1):109-15 |
| References_xml | – reference: Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564. – reference: Donahue KM, Burstein D, Manning WJ, Gray ML. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 1994;32:66-76. – reference: Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 2013:1-13. – reference: Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010;64:177-185. – reference: Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia 1996;17:83-93. – reference: Bender B, Klose U. The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain. NMR Biomed 2010;23:1071-1076. – reference: Kaneoke Y, Furuse M, Inao S, Saso K, Yoshida K, Motegi Y, Mizuno M, Izawa A. Spin-lattice relaxation times of bound water-its determination and implications for tissue discrimination. Magn Reson Imaging 1987;5:415-420. – reference: Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 2001;45:71-79. – reference: Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989;10:135-144. – reference: Fullerton GD, Potter JL, Dornbluth NC. NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imaging 1982;1:209-226. – reference: Helms G, Dathe H, Dechent P. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 2008;59:667-672. – reference: Fatouros PP, Marmarou A. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 1999;90:109-115. – reference: Preibisch C, Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 2009;61:125-135. – reference: Kamman RL, Go KG, Brouwer W, Berendsen HJ. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 1988;6:265-274. – reference: Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462. – reference: Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 1991;17:402-413. – reference: Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 2012;32:16095-16105. – reference: Lutti A, Stadler J, Josephs O, Windischberger C, Speck O, Bernarding J, Hutton C, Weiskopf N. Robust and fast whole brain mapping of the RF transmit field B1 at 7T. PLoS One 2012;7:e32379. – reference: Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, Ooi C, Bullmore ET, Lutti A. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci 2013;7:1-11. – reference: Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851. – reference: Helms G, Hagberg GE. Pulsed saturation of the standard two-pool model for magnetization transfer. Part I: the steady state. Concepts Magn Reson 2004;21A:37-49. – reference: Helms G, Dechent P. Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D FLASH imaging of the human brain at 3T. J Magn Reson Imaging 2009;29:198-204. – reference: Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008;60:1396-1407. – reference: Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407-415. – reference: Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K, Springer CS. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007;57:308-318. – reference: Shuter B, Wang SC, Roche J, Briggs G, Pope JM. Relaxivity of Gd-EOB-DTPA in the normal and biliary obstructed guinea pig. J Magn Reson Imaging 1998;8:853-861. – reference: Li X, Rooney WD, Springer CS. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med 2005;54:1351-1359. – reference: Helms G, Piringer A. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses. NMR Biomed 2005;18:44-50. – reference: Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy. Cereb Cortex 2013;23:2261-2268. – reference: Wharton S, Bowtell R. Gradient echo based fiber orientation mapping using r2* and frequency difference measurements. Neuroimage 2013;83:1011-1023. – volume: 7 start-page: e32379 year: 2012 article-title: Robust and fast whole brain mapping of the RF transmit field B1 at 7T publication-title: PLoS One – volume: 8 start-page: 853 year: 1998 end-page: 861 article-title: Relaxivity of Gd‐EOB‐DTPA in the normal and biliary obstructed guinea pig publication-title: J Magn Reson Imaging – volume: 90 start-page: 109 year: 1999 end-page: 115 article-title: Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values publication-title: J Neurosurg – volume: 7 start-page: 1 year: 2013 end-page: 11 article-title: Quantitative multi‐parameter mapping of R1, PD*, MT, and R2* at 3T: a multi‐center validation publication-title: Front Neurosci – volume: 109 start-page: 18559 year: 2012 end-page: 18564 article-title: Fiber orientation‐dependent white matter contrast in gradient echo MRI publication-title: Proc Natl Acad Sci U S A – volume: 57 start-page: 308 year: 2007 end-page: 318 article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo publication-title: Magn Reson Med – volume: 26 start-page: 839 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: Neuroimage – volume: 18 start-page: 44 year: 2005 end-page: 50 article-title: Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses publication-title: NMR Biomed – volume: 61 start-page: 125 year: 2009 end-page: 135 article-title: Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles publication-title: Magn Reson Med – volume: 6 start-page: 265 year: 1988 end-page: 274 article-title: Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature publication-title: Magn Reson Med – volume: 60 start-page: 1396 year: 2008 end-page: 1407 article-title: High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI publication-title: Magn Reson Med – volume: 21A start-page: 37 year: 2004 end-page: 49 article-title: Pulsed saturation of the standard two‐pool model for magnetization transfer. Part I: the steady state publication-title: Concepts Magn Reson – volume: 32 start-page: 66 year: 1994 end-page: 76 article-title: Studies of Gd‐DTPA relaxivity and proton exchange rates in tissue publication-title: Magn Reson Med – volume: 64 start-page: 177 year: 2010 end-page: 185 article-title: Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI publication-title: Magn Reson Med – volume: 10 start-page: 135 year: 1989 end-page: 144 article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo publication-title: Magn Reson Med – volume: 32 start-page: 16095 year: 2012 end-page: 16105 article-title: In vivo functional and myeloarchitectonic mapping of human primary auditory areas publication-title: J Neurosci – volume: 257 start-page: 455 year: 2010 end-page: 462 article-title: Quantitative MR imaging of brain iron: a postmortem validation study publication-title: Radiology – volume: 54 start-page: 1351 year: 2005 end-page: 1359 article-title: A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents publication-title: Magn Reson Med – volume: 17 start-page: 402 year: 1991 end-page: 413 article-title: In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength publication-title: Magn Reson Med – volume: 59 start-page: 667 year: 2008 end-page: 672 article-title: Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation publication-title: Magn Reson Med – volume: 23 start-page: 1071 year: 2010 end-page: 1076 article-title: The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain publication-title: NMR Biomed – volume: 83 start-page: 1011 year: 2013 end-page: 1023 article-title: Gradient echo based fiber orientation mapping using r2* and frequency difference measurements publication-title: Neuroimage – volume: 45 start-page: 71 year: 2001 end-page: 79 article-title: Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents publication-title: Magn Reson Med – volume: 56 start-page: 407 year: 2004 end-page: 415 article-title: Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain publication-title: Ann Neurol – volume: 17 start-page: 83 year: 1996 end-page: 93 article-title: Relationship of iron to oligodendrocytes and myelination publication-title: Glia – volume: 5 start-page: 415 year: 1987 end-page: 420 article-title: Spin‐lattice relaxation times of bound water—its determination and implications for tissue discrimination publication-title: Magn Reson Imaging – volume: 23 start-page: 2261 year: 2013 end-page: 2268 article-title: Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy publication-title: Cereb Cortex – volume: 29 start-page: 198 year: 2009 end-page: 204 article-title: Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D FLASH imaging of the human brain at 3T publication-title: J Magn Reson Imaging – volume: 1 start-page: 209 year: 1982 end-page: 226 article-title: NMR relaxation of protons in tissues and other macromolecular water solutions publication-title: Magn Reson Imaging – start-page: 1 year: 2013 end-page: 13 article-title: Using high‐resolution quantitative mapping of R1 as an index of cortical myelination publication-title: Neuroimage – reference: 22826609 - Cereb Cortex. 2013 Sep;23(9):2261-8 – reference: 22427831 - PLoS One. 2012;7(3):e32379 – reference: 19097114 - J Magn Reson Imaging. 2009 Jan;29(1):198-204 – reference: 15455467 - NMR Biomed. 2005 Feb;18(1):44-50 – reference: 23906549 - Neuroimage. 2013 Dec;83:1011-23 – reference: 15349868 - Ann Neurol. 2004 Sep;56(3):407-15 – reference: 16247739 - Magn Reson Med. 2005 Dec;54(6):1351-9 – reference: 11146488 - Magn Reson Med. 2001 Jan;45(1):71-9 – reference: 19097220 - Magn Reson Med. 2009 Jan;61(1):125-35 – reference: 2547135 - Magn Reson Med. 1989 Apr;10(1):135-44 – reference: 6927208 - Magn Reson Imaging. 1982;1(4):209-26 – reference: 3362061 - Magn Reson Med. 1988 Mar;6(3):265-74 – reference: 23152594 - J Neurosci. 2012 Nov 14;32(46):16095-105 – reference: 23772204 - Front Neurosci. 2013 Jun 10;7:95 – reference: 2062213 - Magn Reson Med. 1991 Feb;17(2):402-13 – reference: 8776576 - Glia. 1996 Jun;17(2):83-93 – reference: 20665897 - NMR Biomed. 2010 Nov;23(9):1071-6 – reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51 – reference: 20843991 - Radiology. 2010 Nov;257(2):455-62 – reference: 8084239 - Magn Reson Med. 1994 Jul;32(1):66-76 – reference: 3431351 - Magn Reson Imaging. 1987;5(6):415-20 – reference: 18306368 - Magn Reson Med. 2008 Mar;59(3):667-72 – reference: 23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64 – reference: 17260370 - Magn Reson Med. 2007 Feb;57(2):308-18 – reference: 19025906 - Magn Reson Med. 2008 Dec;60(6):1396-407 – reference: 10413163 - J Neurosurg. 1999 Jan;90(1):109-15 – reference: 23756203 - Neuroimage. 2014 Jun;93 Pt 2:176-88 – reference: 9702887 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):853-61 – reference: 20572139 - Magn Reson Med. 2010 Jul;64(1):177-85 |
| SSID | ssj0009974 |
| Score | 2.4463816 |
| Snippet | Purpose
The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and... The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water... Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and... |
| SourceID | swepub pubmedcentral proquest pubmed wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1309 |
| SubjectTerms | Adult Aged Algorithms Annan fysik Computer Processing and Modeling—Note Computer Simulation Electric Impedance Engineering and Technology Female Fysik Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Linear Models longitudinal relaxation Magnetic Fields Magnetic Resonance Imaging - methods magnetization transfer Male Medical Engineering Medical Imaging Medicinsk bildvetenskap Medicinteknik Middle Aged Models, Biological Natural Sciences Naturvetenskap Other Physics Topics Physical Sciences quantitative Reference Values relaxometry Reproducibility of Results Sensitivity and Specificity Teknik transverse relaxation water content Young Adult |
| Title | A general linear relaxometry model of R1 using imaging data |
| URI | https://api.istex.fr/ark:/67375/WNG-QW7DDNT8-S/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25210 https://www.ncbi.nlm.nih.gov/pubmed/24700606 https://www.proquest.com/docview/1655668409 https://www.proquest.com/docview/1657314100 https://pubmed.ncbi.nlm.nih.gov/PMC4359013 |
| Volume | 73 |
| WOSCitedRecordID | wos000350279900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: WIN dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 issn: 0740-3194 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NGyBe-BgfC4zJSAjxEpbETuxoTxOlgESrUTa14sWyHWerWNspadH47zk7aUYFD0i8RIlsx4l9Z__OPv8O4JVmJY9NqkJldR7ifJ2GgmodJkwXShe6TI3xwSb4cCgmk_xkC47WZ2Eafohuwc1phh-vnYIrXR_ekIbOqtnbBCcftNd34phyJ9IJO7lh3M0bCmbO3ECTszWtUJQcdkURkbrGvP4bvPzTS7LlEt2EsX4e6t__rz94APda-EmOG3l5CFt2vgt3Bu0G-y7c9h6hpn4ER8fkvKGkJq4mVRF37OV6MbPL6ifxAXTIoiSjmDjX-XMynfl4R8S5nD6Gs_7703cfwzbSQjhNMx6FAge5HM1qnM1LtI9oTBkVpdVlGRUq1ZlKVJIltiwc3ZhhhdGiTB3zfGYzUeSGPoHt-WJu94Ag_jNx5vYzdcGoigS-NjJcuxAfqoiiAF77JpdXDZuGVNV351zGUzkefpBfxrzXG54K-TWA_XWfyFavahlnKeJPZ5QG8LJLRo1w2xxqbhcrn4dT576KdT1turCrLGHcMdBkAfCNzu0yOLbtzZT59MKzbiOuROxEA_jWiMFmEW8ryZag6UJermRt5dVvK68yp7F2oZ4ltomWTDAhBaOFVGWeG_ziIrE6gDdeYLp3N6TSiURRkV5U5GA08DfP_j3rc7iLMC9tPOf2YXtZrewLuGV-LKd1deC1Bq98Ig5gpzfqn33Gp_Gn4S9r6x7J |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5XnhUV6BAkZCiEto4jixI7hUlFJENyplUSsull9pV7C7VXYXlX-Px8mmrOCAxC2S7TixZzzf2ONvAJ5rVvPU5CpWTpext9d5LDKtY8q0VdrqOjcmJJvgVSWOj8uDNXizvAvT8kP0G26oGWG9RgXHDemtC9bQcTN-Rb318Q77JeatEgb0UXZwQblbthzMnOFKU7Ilr1BCt_qmHpLiaJ7_DV_-GSbZkYmu4thgiHZv_t8v3IIbHQAl263E3IY1N9mAq4PuiH0DroSYUDO7A6-3yUlLSk2wK9UQvPhyPh27efOThBQ6ZFqTw5Rg8PwJGY1DxiOCQad34cvuu-HbvbjLtRCP8oInsfDLXOkda2_Pa-8hZWnGMlE7XdeJVbkuFFW0oK62SDhmmDVa1DlyzxeuELY02T1Yn0wn7gEQjwBNWuCJprYsU4nwr00M15jkQ9kkieBFGHN51vJpSNV8w_Aynsuj6r38dMR3dqqhkJ8j2FxOiuw0aybTIvcIFN3SCJ71xV4n8KBDTdx0EerwDANYfV_32znsO6OMIwdNEQFfmd2-AvJtr5ZMRqeBd9sjS4-esgi-tnKw2iR4S7KjaDqV3xdy5uTZb3uvssxSjcmepR8TLZlgQgqWWanqsjT-iy11OoKXQWL6d7e00lR6UZFBVOTgcBAeHv571adwbW842Jf7H6qPj-C6B315G0e3CevzZuEew2XzYz6aNU-CCv0C6wwfFg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBSouPMqjgQJGQohL2iR2YkdwqVgWKtiolKKtuFh-tquyD2V3Ufn32E42ZQUHJG6RbMeJPeP5xh5_A_BCEktTlYtYGFnGzl7nMcNSxhmRWkgtba5USDZBq4qdnpZHG_BmdRem4YfoNty8ZoT12iu4mWm7f8UaOq7He5mzPs5hv0YcDvcBXcPD6opyt2w4mCnxK01JVrxCSbbfNXWQ1I_m5d_w5Z9hki2Z6DqODYaof_v_fuEO3GoBKDpoJOYubJjJNmwN2iP2bbgRYkLV_B68PkBnDSk18l2JGvmLL5fTsVnUP1FIoYOmFh2nyAfPn6HROGQ8Qj7o9D587b87efshbnMtxKO8oEnM3DJXOsfa2XPrPCScYoKZNdLaRItcFiITWZEZqz3hmCJaSWZzzz1fmILpUuEHsDmZTswOIIcAVVr4E02pCRYJc69NFJU-yYfQSRLByzDmfNbwaXBRX_jwMprzYfWefx7SXq86YfxLBLurSeGtZs15WuQOgXq3NILnXbHTCX_QISZmugx1KPYBrK6vh80cdp1lhHoOmiICuja7XQXPt71eMhmdB95thywdesIRfGvkYL1J8JZ4S9F0zr8v-dzw2W97r7zEqfTJnrkbE8kJI4wzgjUXtiyV-2KdGRnBqyAx3bsbWumMO1HhQVT44HgQHh79e9VnsHXU6_NPh9XHx3DTYb68CaPbhc1FvTRP4Lr6sRjN66dBg34BFfUfBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+linear+relaxometry+model+of+R1+using+imaging+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Callaghan%2C+Martina+F.&rft.au=Helms%2C+Gunther&rft.au=Lutti%2C+Antoine&rft.au=Mohammadi%2C+Siawoosh&rft.date=2015-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=73&rft.issue=3&rft.spage=1309&rft.epage=1314&rft_id=info:doi/10.1002%2Fmrm.25210&rft.externalDBID=10.1002%252Fmrm.25210&rft.externalDocID=MRM25210 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |