A general linear relaxometry model of R1 using imaging data

Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Magnetic resonance in medicine Ročník 73; číslo 3; s. 1309 - 1314
Hlavní autoři: Callaghan, Martina F., Helms, Gunther, Lutti, Antoine, Mohammadi, Siawoosh, Weiskopf, Nikolaus
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Blackwell Publishing Ltd 01.03.2015
Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Témata:
ISSN:0740-3194, 1522-2594, 1522-2594
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Methods Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2*) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. Results The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. Conclusion A single set of global coefficients can be used to relate R1, MT, and R2* across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309–1314, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort.PURPOSEThe longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort.Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps.METHODSMaps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps.The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort.RESULTSThe model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort.A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model.CONCLUSIONA single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model.
Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Methods Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2*) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. Results The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. Conclusion A single set of global coefficients can be used to relate R1, MT, and R2* across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309–1314, 2015. © 2014 Wiley Periodicals, Inc.
The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2 *) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. A single set of global coefficients can be used to relate R1 , MT, and R2 * across the whole brain. Our population study demonstrates the robustness and stability of the model.
Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water content. Here, we use whole brain multiparametric in vivo data and a general linear relaxometry model to describe the dependence of R1 on these components. We explore a) the validity of having a single fixed set of model coefficients for the whole brain and b) the stability of the model coefficients in a large cohort. Methods Maps of magnetization transfer (MT) and effective transverse relaxation rate (R2*) were used as surrogates for macromolecular and iron content, respectively. Spatial variations in these parameters reflected variations in underlying tissue microstructure. A linear model was applied to the whole brain, including gray/white matter and deep brain structures, to determine the global model coefficients. Synthetic R1 values were then calculated using these coefficients and compared with the measured R1 maps. Results The model's validity was demonstrated by correspondence between the synthetic and measured R1 values and by high stability of the model coefficients across a large cohort. Conclusion A single set of global coefficients can be used to relate R1, MT, and R2* across the whole brain. Our population study demonstrates the robustness and stability of the model. Magn Reson Med, 2014. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. Magn Reson Med 73:1309-1314, 2015. © 2014 Wiley Periodicals, Inc.
Author Helms, Gunther
Weiskopf, Nikolaus
Callaghan, Martina F.
Lutti, Antoine
Mohammadi, Siawoosh
Author_xml – sequence: 1
  givenname: Martina F.
  surname: Callaghan
  fullname: Callaghan, Martina F.
  email: m.callaghan@ucl.ac.uk
  organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
– sequence: 2
  givenname: Gunther
  surname: Helms
  fullname: Helms, Gunther
  organization: MR Research in Neurology and Psychiatry, Department of Cognitive Neurology, University Medical Center, Goettingen, Germany
– sequence: 3
  givenname: Antoine
  surname: Lutti
  fullname: Lutti, Antoine
  organization: LREN, Department des Neurosciences Cliniques, CHUV, Universite de Lausanne, Lausanne, Switzerland
– sequence: 4
  givenname: Siawoosh
  surname: Mohammadi
  fullname: Mohammadi, Siawoosh
  organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
– sequence: 5
  givenname: Nikolaus
  surname: Weiskopf
  fullname: Weiskopf, Nikolaus
  organization: Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24700606$$D View this record in MEDLINE/PubMed
BookMark eNpdkt9PFDEQxxuDkeP0wX_AbOKLLwvt9se2MTEhIGgCGBHD46S7nT2K--Nsd4X77-lxeBGfpsl8vjPfzswe2emHHgl5y-g-o7Q46EK3X8iC0RdkxmRR5IU0YofMaClozpkRu2QvxltKqTGleEV2C1FSqqiakY-H2QJ7DLbNWt-jDVnA1t4PHY5hlXWDwzYbmuySZVP0_SLznV2so7OjfU1eNraN-OYpzsnPk89XR1_ys2-nX48Oz3IvVUlz7RwarLhgsmFCc8YF1w1WTUOdlZWyhS1UgY1j6Qe1cHWlG8mVKBUq7UzN58Ru6sY7XE4VLENyEVYwWA_LIYy2hYAxea9voJ0gIiSq9bUd_dBHMJxVSkkBluoKhBYatOAObGNMLUvuimRuTj5teiRph67Gfkwzed7qWab3N7AY_oDg0lDGU4EPTwXC8HvCOELnY41ta3scpghMpVZMpH0l9P1_6O0whT6NcE1JpbSgJlHv_nW0tfJ3dwk42AB3vsXVNs8orI8C0lHA41HA-eX54yMp8o3CxxHvtwobfoEqeSnh-uIUvl-Xx8cXVxp-8AcPlLq0
CODEN MRMEEN
ContentType Journal Article
Copyright 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. 2014
Copyright_xml – notice: 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
– notice: 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. 2014
CorporateAuthor Lunds universitet
Naturvetenskapliga fakulteten
Faculty of Science
Lund University
Medical Radiation Physics, Lund
Medicinsk strålningsfysik, Lund
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Medicinsk strålningsfysik, Lund
– name: Medical Radiation Physics, Lund
– name: Lund University
– name: Faculty of Science
– name: Lunds universitet
DBID BSCLL
24P
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
DOI 10.1002/mrm.25210
DatabaseName Istex
Wiley Online Library Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1314
ExternalDocumentID oai_portal_research_lu_se_publications_931b6654_a08b_4848_843d_af99c573d2eb
PMC4359013
3593948561
24700606
MRM25210
ark_67375_WNG_QW7DDNT8_S
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: MO 2397/1‐1
– fundername: The Wellcome Trust
  funderid: 091593/Z/10/Z
– fundername: Wellcome Trust
  grantid: 091593/Z/10/Z
– fundername: Wellcome Trust
  grantid: 091593
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
O8X
P64
7X8
5PM
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ID FETCH-LOGICAL-i5670-8dde9eb3415f148313438febff0da5b6a2a262efd1210c4dcb8f536476e68d9c3
IEDL.DBID 24P
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350279900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0740-3194
1522-2594
IngestDate Wed Nov 05 04:02:58 EST 2025
Thu Aug 21 13:25:43 EDT 2025
Fri Jul 11 07:36:46 EDT 2025
Sat Nov 29 14:27:28 EST 2025
Mon Jul 21 06:00:55 EDT 2025
Wed Jan 22 16:22:00 EST 2025
Sun Sep 21 06:18:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords R2
3T
relaxometry
MT
longitudinal relaxation
transverse relaxation
PD
quantitative
water content
magnetization transfer
T1
T2
R1
Language English
License Attribution
2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5670-8dde9eb3415f148313438febff0da5b6a2a262efd1210c4dcb8f536476e68d9c3
Notes ark:/67375/WNG-QW7DDNT8-S
Deutsche Forschungsgemeinschaft - No. MO 2397/1-1
ArticleID:MRM25210
istex:0BFC4520888E4FA13AD9302EB1CA571266C5FDFF
The Wellcome Trust - No. 091593/Z/10/Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Grant sponsor: Deutsche Forschungsgemeinschaft; Grant number: MO 2397/1-1; Grant sponsor: The Wellcome Trust; Grant number: 091593/Z/10/Z.
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25210
PMID 24700606
PQID 1655668409
PQPubID 1016391
PageCount 6
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_931b6654_a08b_4848_843d_af99c573d2eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4359013
proquest_miscellaneous_1657314100
proquest_journals_1655668409
pubmed_primary_24700606
wiley_primary_10_1002_mrm_25210_MRM25210
istex_primary_ark_67375_WNG_QW7DDNT8_S
PublicationCentury 2000
PublicationDate March 2015
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: March 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
– name: Oxford, UK
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
BlackWell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: BlackWell Publishing Ltd
References Donahue KM, Burstein D, Manning WJ, Gray ML. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 1994;32:66-76.
Kaneoke Y, Furuse M, Inao S, Saso K, Yoshida K, Motegi Y, Mizuno M, Izawa A. Spin-lattice relaxation times of bound water-its determination and implications for tissue discrimination. Magn Reson Imaging 1987;5:415-420.
Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, Ooi C, Bullmore ET, Lutti A. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci 2013;7:1-11.
Bender B, Klose U. The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain. NMR Biomed 2010;23:1071-1076.
Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 2001;45:71-79.
Fatouros PP, Marmarou A. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 1999;90:109-115.
Helms G, Dathe H, Dechent P. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 2008;59:667-672.
Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 2012;32:16095-16105.
Helms G, Hagberg GE. Pulsed saturation of the standard two-pool model for magnetization transfer. Part I: the steady state. Concepts Magn Reson 2004;21A:37-49.
Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564.
Wharton S, Bowtell R. Gradient echo based fiber orientation mapping using r2* and frequency difference measurements. Neuroimage 2013;83:1011-1023.
Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 2013:1-13.
Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851.
Kamman RL, Go KG, Brouwer W, Berendsen HJ. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 1988;6:265-274.
Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462.
Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008;60:1396-1407.
Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989;10:135-144.
Lutti A, Stadler J, Josephs O, Windischberger C, Speck O, Bernarding J, Hutton C, Weiskopf N. Robust and fast whole brain mapping of the RF transmit field B1 at 7T. PLoS One 2012;7:e32379.
Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407-415.
Helms G, Dechent P. Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D FLASH imaging of the human brain at 3T. J Magn Reson Imaging 2009;29:198-204.
Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia 1996;17:83-93.
Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy. Cereb Cortex 2013;23:2261-2268.
Shuter B, Wang SC, Roche J, Briggs G, Pope JM. Relaxivity of Gd-EOB-DTPA in the normal and biliary obstructed guinea pig. J Magn Reson Imaging 1998;8:853-861.
Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K, Springer CS. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007;57:308-318.
Preibisch C, Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 2009;61:125-135.
Li X, Rooney WD, Springer CS. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med 2005;54:1351-1359.
Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 1991;17:402-413.
Fullerton GD, Potter JL, Dornbluth NC. NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imaging 1982;1:209-226.
Helms G, Piringer A. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses. NMR Biomed 2005;18:44-50.
Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010;64:177-185.
1991; 17
1996; 17
2009; 61
2013; 23
1987; 5
2013; 83
2008; 59
2013; 7
2005; 26
2001; 45
2012; 32
2007; 57
2009; 29
2012; 109
2010; 23
2010; 64
1989; 10
1982; 1
1988; 6
2010; 257
2004; 56
2004; 21A
2005; 54
2013
2012; 7
1999; 90
2008; 60
2005; 18
1994; 32
1998; 8
20665897 - NMR Biomed. 2010 Nov;23(9):1071-6
23772204 - Front Neurosci. 2013 Jun 10;7:95
19025906 - Magn Reson Med. 2008 Dec;60(6):1396-407
20843991 - Radiology. 2010 Nov;257(2):455-62
19097220 - Magn Reson Med. 2009 Jan;61(1):125-35
3362061 - Magn Reson Med. 1988 Mar;6(3):265-74
11146488 - Magn Reson Med. 2001 Jan;45(1):71-9
23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64
15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
15349868 - Ann Neurol. 2004 Sep;56(3):407-15
19097114 - J Magn Reson Imaging. 2009 Jan;29(1):198-204
6927208 - Magn Reson Imaging. 1982;1(4):209-26
20572139 - Magn Reson Med. 2010 Jul;64(1):177-85
15455467 - NMR Biomed. 2005 Feb;18(1):44-50
23906549 - Neuroimage. 2013 Dec;83:1011-23
8776576 - Glia. 1996 Jun;17(2):83-93
9702887 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):853-61
2547135 - Magn Reson Med. 1989 Apr;10(1):135-44
2062213 - Magn Reson Med. 1991 Feb;17(2):402-13
18306368 - Magn Reson Med. 2008 Mar;59(3):667-72
8084239 - Magn Reson Med. 1994 Jul;32(1):66-76
23756203 - Neuroimage. 2014 Jun;93 Pt 2:176-88
22826609 - Cereb Cortex. 2013 Sep;23(9):2261-8
3431351 - Magn Reson Imaging. 1987;5(6):415-20
17260370 - Magn Reson Med. 2007 Feb;57(2):308-18
23152594 - J Neurosci. 2012 Nov 14;32(46):16095-105
22427831 - PLoS One. 2012;7(3):e32379
16247739 - Magn Reson Med. 2005 Dec;54(6):1351-9
10413163 - J Neurosurg. 1999 Jan;90(1):109-15
References_xml – reference: Wharton S, Bowtell R. Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc Natl Acad Sci U S A 2012;109:18559-18564.
– reference: Donahue KM, Burstein D, Manning WJ, Gray ML. Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magn Reson Med 1994;32:66-76.
– reference: Lutti A, Dick F, Sereno MI, Weiskopf N. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. Neuroimage 2013:1-13.
– reference: Helms G, Dathe H, Dechent P. Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI. Magn Reson Med 2010;64:177-185.
– reference: Connor JR, Menzies SL. Relationship of iron to oligodendrocytes and myelination. Glia 1996;17:83-93.
– reference: Bender B, Klose U. The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain. NMR Biomed 2010;23:1071-1076.
– reference: Kaneoke Y, Furuse M, Inao S, Saso K, Yoshida K, Motegi Y, Mizuno M, Izawa A. Spin-lattice relaxation times of bound water-its determination and implications for tissue discrimination. Magn Reson Imaging 1987;5:415-420.
– reference: Gelman N, Ewing JR, Gorell JM, Spickler EM, Solomon EG. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents. Magn Reson Med 2001;45:71-79.
– reference: Wolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989;10:135-144.
– reference: Fullerton GD, Potter JL, Dornbluth NC. NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imaging 1982;1:209-226.
– reference: Helms G, Dathe H, Dechent P. Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation. Magn Reson Med 2008;59:667-672.
– reference: Fatouros PP, Marmarou A. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values. J Neurosurg 1999;90:109-115.
– reference: Preibisch C, Deichmann R. Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles. Magn Reson Med 2009;61:125-135.
– reference: Kamman RL, Go KG, Brouwer W, Berendsen HJ. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 1988;6:265-274.
– reference: Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 2010;257:455-462.
– reference: Fatouros PP, Marmarou A, Kraft KA, Inao S, Schwarz FP. In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength. Magn Reson Med 1991;17:402-413.
– reference: Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci 2012;32:16095-16105.
– reference: Lutti A, Stadler J, Josephs O, Windischberger C, Speck O, Bernarding J, Hutton C, Weiskopf N. Robust and fast whole brain mapping of the RF transmit field B1 at 7T. PLoS One 2012;7:e32379.
– reference: Weiskopf N, Suckling J, Williams G, Correia MM, Inkster B, Tait R, Ooi C, Bullmore ET, Lutti A. Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: a multi-center validation. Front Neurosci 2013;7:1-11.
– reference: Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851.
– reference: Helms G, Hagberg GE. Pulsed saturation of the standard two-pool model for magnetization transfer. Part I: the steady state. Concepts Magn Reson 2004;21A:37-49.
– reference: Helms G, Dechent P. Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D FLASH imaging of the human brain at 3T. J Magn Reson Imaging 2009;29:198-204.
– reference: Helms G, Dathe H, Kallenberg K, Dechent P. High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magn Reson Med 2008;60:1396-1407.
– reference: Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56:407-415.
– reference: Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K, Springer CS. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 2007;57:308-318.
– reference: Shuter B, Wang SC, Roche J, Briggs G, Pope JM. Relaxivity of Gd-EOB-DTPA in the normal and biliary obstructed guinea pig. J Magn Reson Imaging 1998;8:853-861.
– reference: Li X, Rooney WD, Springer CS. A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents. Magn Reson Med 2005;54:1351-1359.
– reference: Helms G, Piringer A. Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses. NMR Biomed 2005;18:44-50.
– reference: Sereno MI, Lutti A, Weiskopf N, Dick F. Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy. Cereb Cortex 2013;23:2261-2268.
– reference: Wharton S, Bowtell R. Gradient echo based fiber orientation mapping using r2* and frequency difference measurements. Neuroimage 2013;83:1011-1023.
– volume: 7
  start-page: e32379
  year: 2012
  article-title: Robust and fast whole brain mapping of the RF transmit field B1 at 7T
  publication-title: PLoS One
– volume: 8
  start-page: 853
  year: 1998
  end-page: 861
  article-title: Relaxivity of Gd‐EOB‐DTPA in the normal and biliary obstructed guinea pig
  publication-title: J Magn Reson Imaging
– volume: 90
  start-page: 109
  year: 1999
  end-page: 115
  article-title: Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values
  publication-title: J Neurosurg
– volume: 7
  start-page: 1
  year: 2013
  end-page: 11
  article-title: Quantitative multi‐parameter mapping of R1, PD*, MT, and R2* at 3T: a multi‐center validation
  publication-title: Front Neurosci
– volume: 109
  start-page: 18559
  year: 2012
  end-page: 18564
  article-title: Fiber orientation‐dependent white matter contrast in gradient echo MRI
  publication-title: Proc Natl Acad Sci U S A
– volume: 57
  start-page: 308
  year: 2007
  end-page: 318
  article-title: Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo
  publication-title: Magn Reson Med
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 18
  start-page: 44
  year: 2005
  end-page: 50
  article-title: Simultaneous measurement of saturation and relaxation in human brain by repetitive magnetization transfer pulses
  publication-title: NMR Biomed
– volume: 61
  start-page: 125
  year: 2009
  end-page: 135
  article-title: Influence of RF spoiling on the stability and accuracy of T1 mapping based on spoiled FLASH with varying flip angles
  publication-title: Magn Reson Med
– volume: 6
  start-page: 265
  year: 1988
  end-page: 274
  article-title: Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1396
  year: 2008
  end-page: 1407
  article-title: High‐resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI
  publication-title: Magn Reson Med
– volume: 21A
  start-page: 37
  year: 2004
  end-page: 49
  article-title: Pulsed saturation of the standard two‐pool model for magnetization transfer. Part I: the steady state
  publication-title: Concepts Magn Reson
– volume: 32
  start-page: 66
  year: 1994
  end-page: 76
  article-title: Studies of Gd‐DTPA relaxivity and proton exchange rates in tissue
  publication-title: Magn Reson Med
– volume: 64
  start-page: 177
  year: 2010
  end-page: 185
  article-title: Modeling the influence of TR and excitation flip angle on the magnetization transfer ratio (MTR) in human brain obtained from 3D spoiled gradient echo MRI
  publication-title: Magn Reson Med
– volume: 10
  start-page: 135
  year: 1989
  end-page: 144
  article-title: Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo
  publication-title: Magn Reson Med
– volume: 32
  start-page: 16095
  year: 2012
  end-page: 16105
  article-title: In vivo functional and myeloarchitectonic mapping of human primary auditory areas
  publication-title: J Neurosci
– volume: 257
  start-page: 455
  year: 2010
  end-page: 462
  article-title: Quantitative MR imaging of brain iron: a postmortem validation study
  publication-title: Radiology
– volume: 54
  start-page: 1351
  year: 2005
  end-page: 1359
  article-title: A unified magnetic resonance imaging pharmacokinetic theory: intravascular and extracellular contrast reagents
  publication-title: Magn Reson Med
– volume: 17
  start-page: 402
  year: 1991
  end-page: 413
  article-title: In vivo brain water determination by T1 measurements: effect of total water content, hydration fraction, and field strength
  publication-title: Magn Reson Med
– volume: 59
  start-page: 667
  year: 2008
  end-page: 672
  article-title: Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation
  publication-title: Magn Reson Med
– volume: 23
  start-page: 1071
  year: 2010
  end-page: 1076
  article-title: The in vivo influence of white matter fiber orientation towards B(0) on T2* in the human brain
  publication-title: NMR Biomed
– volume: 83
  start-page: 1011
  year: 2013
  end-page: 1023
  article-title: Gradient echo based fiber orientation mapping using r2* and frequency difference measurements
  publication-title: Neuroimage
– volume: 45
  start-page: 71
  year: 2001
  end-page: 79
  article-title: Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents
  publication-title: Magn Reson Med
– volume: 56
  start-page: 407
  year: 2004
  end-page: 415
  article-title: Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain
  publication-title: Ann Neurol
– volume: 17
  start-page: 83
  year: 1996
  end-page: 93
  article-title: Relationship of iron to oligodendrocytes and myelination
  publication-title: Glia
– volume: 5
  start-page: 415
  year: 1987
  end-page: 420
  article-title: Spin‐lattice relaxation times of bound water—its determination and implications for tissue discrimination
  publication-title: Magn Reson Imaging
– volume: 23
  start-page: 2261
  year: 2013
  end-page: 2268
  article-title: Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy
  publication-title: Cereb Cortex
– volume: 29
  start-page: 198
  year: 2009
  end-page: 204
  article-title: Increased SNR and reduced distortions by averaging multiple gradient echo signals in 3D FLASH imaging of the human brain at 3T
  publication-title: J Magn Reson Imaging
– volume: 1
  start-page: 209
  year: 1982
  end-page: 226
  article-title: NMR relaxation of protons in tissues and other macromolecular water solutions
  publication-title: Magn Reson Imaging
– start-page: 1
  year: 2013
  end-page: 13
  article-title: Using high‐resolution quantitative mapping of R1 as an index of cortical myelination
  publication-title: Neuroimage
– reference: 22826609 - Cereb Cortex. 2013 Sep;23(9):2261-8
– reference: 22427831 - PLoS One. 2012;7(3):e32379
– reference: 19097114 - J Magn Reson Imaging. 2009 Jan;29(1):198-204
– reference: 15455467 - NMR Biomed. 2005 Feb;18(1):44-50
– reference: 23906549 - Neuroimage. 2013 Dec;83:1011-23
– reference: 15349868 - Ann Neurol. 2004 Sep;56(3):407-15
– reference: 16247739 - Magn Reson Med. 2005 Dec;54(6):1351-9
– reference: 11146488 - Magn Reson Med. 2001 Jan;45(1):71-9
– reference: 19097220 - Magn Reson Med. 2009 Jan;61(1):125-35
– reference: 2547135 - Magn Reson Med. 1989 Apr;10(1):135-44
– reference: 6927208 - Magn Reson Imaging. 1982;1(4):209-26
– reference: 3362061 - Magn Reson Med. 1988 Mar;6(3):265-74
– reference: 23152594 - J Neurosci. 2012 Nov 14;32(46):16095-105
– reference: 23772204 - Front Neurosci. 2013 Jun 10;7:95
– reference: 2062213 - Magn Reson Med. 1991 Feb;17(2):402-13
– reference: 8776576 - Glia. 1996 Jun;17(2):83-93
– reference: 20665897 - NMR Biomed. 2010 Nov;23(9):1071-6
– reference: 15955494 - Neuroimage. 2005 Jul 1;26(3):839-51
– reference: 20843991 - Radiology. 2010 Nov;257(2):455-62
– reference: 8084239 - Magn Reson Med. 1994 Jul;32(1):66-76
– reference: 3431351 - Magn Reson Imaging. 1987;5(6):415-20
– reference: 18306368 - Magn Reson Med. 2008 Mar;59(3):667-72
– reference: 23091011 - Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18559-64
– reference: 17260370 - Magn Reson Med. 2007 Feb;57(2):308-18
– reference: 19025906 - Magn Reson Med. 2008 Dec;60(6):1396-407
– reference: 10413163 - J Neurosurg. 1999 Jan;90(1):109-15
– reference: 23756203 - Neuroimage. 2014 Jun;93 Pt 2:176-88
– reference: 9702887 - J Magn Reson Imaging. 1998 Jul-Aug;8(4):853-61
– reference: 20572139 - Magn Reson Med. 2010 Jul;64(1):177-85
SSID ssj0009974
Score 2.4463816
Snippet Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and...
The longitudinal relaxation rate (R1 ) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and water...
Purpose The longitudinal relaxation rate (R1) measured in vivo depends on the local microstructural properties of the tissue, such as macromolecular, iron, and...
SourceID swepub
pubmedcentral
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1309
SubjectTerms Adult
Aged
Algorithms
Annan fysik
Computer Processing and Modeling—Note
Computer Simulation
Electric Impedance
Engineering and Technology
Female
Fysik
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Linear Models
longitudinal relaxation
Magnetic Fields
Magnetic Resonance Imaging - methods
magnetization transfer
Male
Medical Engineering
Medical Imaging
Medicinsk bildvetenskap
Medicinteknik
Middle Aged
Models, Biological
Natural Sciences
Naturvetenskap
Other Physics Topics
Physical Sciences
quantitative
Reference Values
relaxometry
Reproducibility of Results
Sensitivity and Specificity
Teknik
transverse relaxation
water content
Young Adult
Title A general linear relaxometry model of R1 using imaging data
URI https://api.istex.fr/ark:/67375/WNG-QW7DDNT8-S/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25210
https://www.ncbi.nlm.nih.gov/pubmed/24700606
https://www.proquest.com/docview/1655668409
https://www.proquest.com/docview/1657314100
https://pubmed.ncbi.nlm.nih.gov/PMC4359013
Volume 73
WOSCitedRecordID wos000350279900045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: WIN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  issn: 0740-3194
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NGyBe-BgfC4zJSAjxEpbETuxoTxOlgESrUTa14sWyHWerWNspadH47zk7aUYFD0i8RIlsx4l9Z__OPv8O4JVmJY9NqkJldR7ifJ2GgmodJkwXShe6TI3xwSb4cCgmk_xkC47WZ2Eafohuwc1phh-vnYIrXR_ekIbOqtnbBCcftNd34phyJ9IJO7lh3M0bCmbO3ECTszWtUJQcdkURkbrGvP4bvPzTS7LlEt2EsX4e6t__rz94APda-EmOG3l5CFt2vgt3Bu0G-y7c9h6hpn4ER8fkvKGkJq4mVRF37OV6MbPL6ifxAXTIoiSjmDjX-XMynfl4R8S5nD6Gs_7703cfwzbSQjhNMx6FAge5HM1qnM1LtI9oTBkVpdVlGRUq1ZlKVJIltiwc3ZhhhdGiTB3zfGYzUeSGPoHt-WJu94Ag_jNx5vYzdcGoigS-NjJcuxAfqoiiAF77JpdXDZuGVNV351zGUzkefpBfxrzXG54K-TWA_XWfyFavahlnKeJPZ5QG8LJLRo1w2xxqbhcrn4dT576KdT1turCrLGHcMdBkAfCNzu0yOLbtzZT59MKzbiOuROxEA_jWiMFmEW8ryZag6UJermRt5dVvK68yp7F2oZ4ltomWTDAhBaOFVGWeG_ziIrE6gDdeYLp3N6TSiURRkV5U5GA08DfP_j3rc7iLMC9tPOf2YXtZrewLuGV-LKd1deC1Bq98Ig5gpzfqn33Gp_Gn4S9r6x7J
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5V5XnhUV6BAkZCiEto4jixI7hUlFJENyplUSsull9pV7C7VXYXlX-Px8mmrOCAxC2S7TixZzzf2ONvAJ5rVvPU5CpWTpext9d5LDKtY8q0VdrqOjcmJJvgVSWOj8uDNXizvAvT8kP0G26oGWG9RgXHDemtC9bQcTN-Rb318Q77JeatEgb0UXZwQblbthzMnOFKU7Ilr1BCt_qmHpLiaJ7_DV_-GSbZkYmu4thgiHZv_t8v3IIbHQAl263E3IY1N9mAq4PuiH0DroSYUDO7A6-3yUlLSk2wK9UQvPhyPh27efOThBQ6ZFqTw5Rg8PwJGY1DxiOCQad34cvuu-HbvbjLtRCP8oInsfDLXOkda2_Pa-8hZWnGMlE7XdeJVbkuFFW0oK62SDhmmDVa1DlyzxeuELY02T1Yn0wn7gEQjwBNWuCJprYsU4nwr00M15jkQ9kkieBFGHN51vJpSNV8w_Aynsuj6r38dMR3dqqhkJ8j2FxOiuw0aybTIvcIFN3SCJ71xV4n8KBDTdx0EerwDANYfV_32znsO6OMIwdNEQFfmd2-AvJtr5ZMRqeBd9sjS4-esgi-tnKw2iR4S7KjaDqV3xdy5uTZb3uvssxSjcmepR8TLZlgQgqWWanqsjT-iy11OoKXQWL6d7e00lR6UZFBVOTgcBAeHv571adwbW842Jf7H6qPj-C6B315G0e3CevzZuEew2XzYz6aNU-CCv0C6wwfFg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VBSouPMqjgQJGQohL2iR2YkdwqVgWKtiolKKtuFh-tquyD2V3Ufn32E42ZQUHJG6RbMeJPeP5xh5_A_BCEktTlYtYGFnGzl7nMcNSxhmRWkgtba5USDZBq4qdnpZHG_BmdRem4YfoNty8ZoT12iu4mWm7f8UaOq7He5mzPs5hv0YcDvcBXcPD6opyt2w4mCnxK01JVrxCSbbfNXWQ1I_m5d_w5Z9hki2Z6DqODYaof_v_fuEO3GoBKDpoJOYubJjJNmwN2iP2bbgRYkLV_B68PkBnDSk18l2JGvmLL5fTsVnUP1FIoYOmFh2nyAfPn6HROGQ8Qj7o9D587b87efshbnMtxKO8oEnM3DJXOsfa2XPrPCScYoKZNdLaRItcFiITWZEZqz3hmCJaSWZzzz1fmILpUuEHsDmZTswOIIcAVVr4E02pCRYJc69NFJU-yYfQSRLByzDmfNbwaXBRX_jwMprzYfWefx7SXq86YfxLBLurSeGtZs15WuQOgXq3NILnXbHTCX_QISZmugx1KPYBrK6vh80cdp1lhHoOmiICuja7XQXPt71eMhmdB95thywdesIRfGvkYL1J8JZ4S9F0zr8v-dzw2W97r7zEqfTJnrkbE8kJI4wzgjUXtiyV-2KdGRnBqyAx3bsbWumMO1HhQVT44HgQHh79e9VnsHXU6_NPh9XHx3DTYb68CaPbhc1FvTRP4Lr6sRjN66dBg34BFfUfBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+linear+relaxometry+model+of+R1+using+imaging+data&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Callaghan%2C+Martina+F.&rft.au=Helms%2C+Gunther&rft.au=Lutti%2C+Antoine&rft.au=Mohammadi%2C+Siawoosh&rft.date=2015-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=73&rft.issue=3&rft.spage=1309&rft.epage=1314&rft_id=info:doi/10.1002%2Fmrm.25210&rft.externalDBID=10.1002%252Fmrm.25210&rft.externalDocID=MRM25210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon