Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses
Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique‐limited. Here, we introduce phageF...
Uloženo v:
| Vydáno v: | Environmental microbiology Ročník 15; číslo 8; s. 2306 - 2318 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.08.2013
Blackwell Wiley Subscription Services, Inc John Wiley & Sons Ltd |
| Témata: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique‐limited. Here, we introduce phageFISH – a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra‐ and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus–gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per‐cell relative measurements of phage DNA, enabling single‐cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population‐averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage–host system, and debut phageFISH as a much‐needed tool for studying phage–host interactions in the laboratory, with great promise for environmental surveys and lineage‐specific population ecology of free phages. |
|---|---|
| AbstractList | Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages. Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique‐limited. Here, we introduce phageFISH – a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra‐ and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus–gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per‐cell relative measurements of phage DNA, enabling single‐cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population‐averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage–host system, and debut phageFISH as a much‐needed tool for studying phage–host interactions in the laboratory, with great promise for environmental surveys and lineage‐specific population ecology of free phages. Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to >92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages [PUBLICATION ABSTRACT]. Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages. |
| Author | Sullivan, Matthew B. Allers, Elke Barrero-Canosa, Jimena Moraru, Cristina Duhaime, Melissa B. Beneze, Erica Solonenko, Natalie Amann, Rudolf |
| Author_xml | – sequence: 1 givenname: Elke surname: Allers fullname: Allers, Elke organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA – sequence: 2 givenname: Cristina surname: Moraru fullname: Moraru, Cristina organization: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany – sequence: 3 givenname: Melissa B. surname: Duhaime fullname: Duhaime, Melissa B. organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA – sequence: 4 givenname: Erica surname: Beneze fullname: Beneze, Erica organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA – sequence: 5 givenname: Natalie surname: Solonenko fullname: Solonenko, Natalie organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA – sequence: 6 givenname: Jimena surname: Barrero-Canosa fullname: Barrero-Canosa, Jimena organization: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany – sequence: 7 givenname: Rudolf surname: Amann fullname: Amann, Rudolf email: mbsulli@email.arizona.edu organization: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany – sequence: 8 givenname: Matthew B. surname: Sullivan fullname: Sullivan, Matthew B. email: mbsulli@email.arizona.edu organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27627360$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23489642$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkuP0zAUhSM0iHnAmh2KhJBYELAdv7IZCY1mOhUDSHQQS8uJb1sPrlPspFD2_G-ctoTHCm_i-H7n-No-p9mRbz1k2WOMXuI0XmHKSUEqkn4JRuhedjKuHI1zTI6z0xjvEMKiFOhBdkxKKitOyUn2Y2b9wkHRgHO59iZft-ve6c62PnewAZdvbNAut34OzW7VbL1e2SbmIZW1A5PX23y91Au4ms6uX-Q6X0G3bE3etUkbe-3sd0j6Luhhk2QedhvNA8Bg3keID7P7c-0iPDp8z7KPV5e3F9fFzfvJ9OL1TWEZEqgQIGllGAUkOKlLQRHi0mBcSSbnJJ0W18RwSQwWTNS11LrhhlCJddXI0rDyLDvf-677egWmgaErp9bBrnTYqlZb9XfF26VatBtVSkmFwMng-cEgtF96iJ1a2TgcS3to-6gwLZFkFePsP9DUZUkFH1yf_oPetX3w6SYGivOqEqxK1JM_mx-7_vWYCXh2AHRstJsH7Rsbf3Pp0kTJUeLYnvtqHWzHOkZqyJQaUqOGBKldptTl2-luknTFXmdjB99GnQ6fFU_BYurTu4lC4g39MBMTdVv-BGMuzlI |
| ContentType | Journal Article |
| Copyright | 2013 John Wiley & Sons Ltd and Society for Applied Microbiology 2014 INIST-CNRS 2013 John Wiley & Sons Ltd and Society for Applied Microbiology. Copyright © 2013 John Wiley & Sons Ltd Copyright © 2013 John Wiley & Sons Ltd 2013 |
| Copyright_xml | – notice: 2013 John Wiley & Sons Ltd and Society for Applied Microbiology – notice: 2014 INIST-CNRS – notice: 2013 John Wiley & Sons Ltd and Society for Applied Microbiology. – notice: Copyright © 2013 John Wiley & Sons Ltd – notice: Copyright © 2013 John Wiley & Sons Ltd 2013 |
| DBID | BSCLL 24P IQODW CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 5PM |
| DOI | 10.1111/1462-2920.12100 |
| DatabaseName | Istex Wiley Online Library Open Access Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
| DatabaseTitleList | AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1462-2920 |
| EndPage | 2318 |
| ExternalDocumentID | PMC3884771 3034529341 23489642 27627360 EMI12100 ark_67375_WNG_07K4RS7G_T |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Max Planck Society – fundername: Deutsche Forschungsgemeinschaft – fundername: Biosphere2 – fundername: BIO5 – fundername: Gordon and Betty Moore Foundation |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT 24P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX WRC IQODW CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 5PM |
| ID | FETCH-LOGICAL-i5070-7e849d54e0762b3740068d119858f21461b2d682d1757bb8aac6d2481a9c83d53 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 104 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322625500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Tue Nov 04 01:55:48 EST 2025 Tue Oct 07 09:35:46 EDT 2025 Fri Jul 11 08:50:48 EDT 2025 Fri Jul 25 10:23:50 EDT 2025 Mon Jul 21 05:42:00 EDT 2025 Wed Apr 02 07:25:21 EDT 2025 Wed Jan 22 17:06:41 EST 2025 Sun Sep 21 06:20:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Infection Virus Cell population Dynamics Viral disease Isolated cell Intracellular Method |
| Language | English |
| License | CC BY 4.0 2013 John Wiley & Sons Ltd and Society for Applied Microbiology. Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i5070-7e849d54e0762b3740068d119858f21461b2d682d1757bb8aac6d2481a9c83d53 |
| Notes | BIO5 istex:BAB283F7DFE189E3D5A98145742BDBE02BFF1D6C SI Text. Table S1. Polynucleotide probes targeting a region spanning a phage gene of unknown function (abbreviated here as unk) in the Pseudoalteromonas phage PSA-HP1 genome (genome position 8564-13 387 bp). Table S2. Q-PCR primer and amplicon sequences. Table S3. Calculated and measured Tm for the polynucleotides forming the unk probe mix. Fig. S1. geneFISH protocol optimization. A. Genome map of phage PSA-HP1. The six (300 bp each) probe-target regions are indicated in orange. Probes target unknown phage gene, unk (grey). B. Variation of the gene detection efficiency with increasing number of polynuclotide probes. Escherichia coli low target copy clones (3-8 copies per cell) were hybridized with an increasing number of polynucleotide probes targeting the unk gene. As negative control (no unk gene), E. coli strain B/R cells were used. The detection efficiency is defined as the fraction of all cells showing a gene positive signal. C. Detection of unk gene in high target copy cells using three polynucleotide probes - all the cells have a gene signal, resulting in 100% detection efficiency. Top image - overlay image between 16S rRNA signal and gene signal. Bottom image - gene signal. Scale bar = 5 μm. Exposure time (ms, milliseconds) is described for the gene image. D. Appearance of gene signals for different dextran sulfate concentrations (10%, 20% and 30%). All pictures were taken using the same exposure time. Concentrations of 20% and 30% dextran sulfate resulted in a much sharper signal as compared with 10%. Scale bar = 5 μm. E. Gene detection efficiency for different dextran sulfate concentrations (10%, 20% and 30%). Blue bars = low target gene copy cells, red bars = negative control cells. While the detection efficiency was high for all concentrations, the background level (% of false positives in the negative control) increased with the dextran sulfate concentration. F. Variation of the gene (unk) signal intensity and spread through the cell with variation of the gene probe and target copy number. Scale bar = 5 μm. Exposure times (ms, milliseconds) are described for the gene images. The signal intensity increases with the increasing number of probes (higher exposure time was necessary when hybridizing with one probe). The signal spread and intensity increases with the increase in the target number, from dot-like for low target copy cells to whole cell signal for high target copy cells. For high target copy number cells, starting with ∼ 6 probes, the signal does not increase anymore with the probe number, most likely due to a saturation of tyramide binding sites. Fig. S2. Pseudoalteromonas sp. H100 growth curves based on triplicate measurements. The bacterial host was physiologically acclimated for three generations resulting in 0.72 doublings per hour (± 0.06 doublings per hour, n = 3) during exponential growth. Error bars indicate standard deviation. Fig. S3. Virus assays including controls. A. Extracellular phage DNA as measured by quantitative PCR in infected (black circles) and control (white circles) cultures. B. Extracellular phage number as measured by PFU in infected (black circles) and control (white circles) cultures. Control data are zero unless plotted otherwise. Fig. S4. Determination of phage signal size classes and segregation of the two waves of infection. A. Plot of signal size versus signal intensity for T0-T81. B. Plots of signal size versus signal intensity for each of the individual time points (from T0 to T81). Blue lines delimitate signal size classes. Class I (< 0.4 μm2): most probably new infections; Class II (0.4-1.4 μm2): most probably replicating infections; Class III (1.4-7.0 μm2): most probably advanced infections. To establish the upper and lower limits of the smallest, first size class, we assumed that T0 signals represented new infections - these signals have both a small area and a low intensity (panel B). To establish the bounds of the largest, third size class, the first time point where both signal area and intensity were maximum (T36) was considered to represent advanced infections, i.e. late replication and assembly. All signals between those two size classes were considered as size class II, that is replicating infections - for examples, compare T0 with T21 and T36. While at T36 there were almost no class I signals, at T51 they reappeared and were abundant at T66 and T81. Furthermore, the class III signals decreased in abundance at T66 and T81. The re-appearance of class I signals in T51-T81 was assumed to represent new infection events by newly released mature phage particles and thus, a second wave of infection. All other T51-T81 signals were considered old infections from the first wave, in the process of phage maturation and release. Fig. S5. Localization of encapsidated phage and host cell ribosomes in TEM image of phage-infected Pseudoalteromonas cells from T66. Magnification 40 000×, scale bar = 500 nm. Fig. S6. PhageFISH with the negative control gene probe (NonPoly350Pr) on infected cells from T81. The false positive events (white arrows) are all in the smallest signal size class and they amount to a background of ∼ 2% from the cells. No false positives similar to the signals in the higher size class categories or to the cell bursts releasing phage particles are visible. Fig. S7. Reconstruction of the Alexa594 image T21 from Fig. A by using the High Dynamic Range Imaging protocol. A-C. Exposure time series. D. Reconstructed image. Fig. S8. Reconstruction of the Alexa594 image T36 from Fig. A by using the High Dynamic Range Imaging protocol. A-C. Exposure time series. D. Reconstructed image Fig. S9. Reconstruction of the Alexa594 image T51 from Fig. A by using the High Dynamic Range Imaging protocol. A-B. Exposure time series. C. Reconstructed image. Fig. S10. Reconstruction of the Alexa594 image T66 from Fig. B by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Fig. S11. Reconstruction of the Alexa594 image T81 from Fig. B by using the High Dynamic Range Imaging protocol. A-E. Exposure time series. F. Reconstructed image. Fig. S12. Reconstruction of the Alexa594 image T96 from Fig. B by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Fig. S13. Reconstruction of the Alexa594 image T111 from Fig. C by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Fig. S14. Reconstruction of the Alexa594 image T126 from Fig. C by using the High Dynamic Range Imaging protocol. A-E. Exposure time series. F. Reconstructed image. Fig. S15. Reconstruction of the Alexa594 image T141 from Fig. C by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Deutsche Forschungsgemeinschaft ark:/67375/WNG-07K4RS7G-T ArticleID:EMI12100 Gordon and Betty Moore Foundation Biosphere2 Max Planck Society ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12100 |
| PMID | 23489642 |
| PQID | 1416699759 |
| PQPubID | 1066360 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3884771 proquest_miscellaneous_1430859565 proquest_miscellaneous_1417534761 proquest_journals_1416699759 pubmed_primary_23489642 pascalfrancis_primary_27627360 wiley_primary_10_1111_1462_2920_12100_EMI12100 istex_primary_ark_67375_WNG_07K4RS7G_T |
| PublicationCentury | 2000 |
| PublicationDate | August 2013 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: England |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishing Ltd Blackwell Wiley Subscription Services, Inc John Wiley & Sons Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley Subscription Services, Inc – name: John Wiley & Sons Ltd |
| References | Sullivan, M.B., Huang, K.H., Ignacio-Espinoza, J.C., Berlin, A.M., Kelly, L., Weigele, P.R., et al. (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12: 3035-3056. Wichels, A., Biel, S.S., Gelderblom, H.R., Brinkhoff, T., Muyzer, G., and Schuett, C. (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64: 4128-4133. Comeau, A.M., and Suttle, C.A. (2007) Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia. Environ Microbiol 9: 1790-1800. Moraru, C., Lam, P., Fuchs, B.M., Kuypers, M.M.M., and Amann, R. (2010) GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12: 3057-3073. Clokie, M.R.J., Shan, J., Bailey, S., Jia, Y., and Krisch, H.M. (2006) Transcription of a 'photosynthetic' T4-type phage during infection of a marine cyanobacterium. Environ Microbiol 8: 827-835. Hurwitz, B.L., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol. doi 10.1111/j.1462-2920.2012.02836.x. (in press) Proctor, L.M., Okubo, A., and Fuhrman, J.A. (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25: 161-182. Proctor, L.M., and Fuhrman, J.A. (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60-62. Lindell, D., Sullivan, M.B., Johnson, Z.I., Tolonen, A.C., Rohwer, F., and Chisholm, S.W. (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101: 11013-11018. Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169. Jiang, S.C., Kellogg, C.A., and Paul, J.H. (1998) Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64: 535-542. Hellweger, F.L. (2009) Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ Microbiol 11: 1386-1394. Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541-548. Mann, N.H., Cook, A., Millard, A., Bailey, S., and Clokie, M. (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424: 741-741. Bragg, J.G., and Chisholm, S.W. (2008) Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS ONE 3: e3550. Breitbart, M., Thompson, L.R., Suttle, C.S., and Sullivan, M.B. (2007) Exploring the vast diversity of marine viruses. Oceanography 20: 353-362. Kristensen, D.M., Waller, A.S., Yamada, T., Bork, P., Mushegian, A.R., and Koonin, E.V. (2012) Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J Bacteriol. doi: 10.1128/jb.01801-12 (in press) Zhang, Y., and Jiao, N. (2009) Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol 75: 1745-1749. Steward, G.F., Smith, D.C., and Azam, F. (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131: 287-300. Deng, L., Gregory, A., Yilmaz, S., Poulos, B.T., Hugenholtz, P., and Sullivan, M.B. (2012) Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. mBio 3: e00373-12. Adams, M.K. (1959) Bacteriophages. New York, USA: Interscience Publ. Wilhelm, S.W., Weinbauer, M.G., Suttle, C.A., and Jeffrey, W.H. (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43: 586-592. Moraru, C., and Amann, R. (2012) Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 35: 549-552. Moraru, C., Moraru, G., Fuchs, B.M., and Amann, R. (2011) Concepts and software for a rational design of polynucleotide probes. Environ Microbiol Rep 3: 69-78. Marston, M.F., and Sallee, J.L. (2003) Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 69: 4639-4647. Wichels, A., Gerdts, G., and Schuett, C. (2002) Pseudoalteromonas spp. phages, a significant group of marine bacteriophages in the North Sea. Aquat Microb Ecol 27: 233-239. Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101. Kenzaka, T., Tani, K., and Nasu, M. (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4: 648-659. Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2: 106-110. Tadmor, A.D., Ottesen, E.A., Leadbetter, J.R., and Phillips, R. (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333: 58-62. Brum, J.R., Steward, G.F., Jiang, S.C., and Jellison, R. (2005) Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Microb Ecol 41: 247-260. Raytcheva, D.A., Haase-Pettingell, C., Piret, J.M., and King, J.A. (2011) Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol 85: 2406-2415. Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., et al. (2006) Climate-driven trends in contemporary ocean productivity. Nature 444: 752-755. Holmström, C., and Kjelleberg, S. (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285-293. Sullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., and Chisholm, S.W. (2006) Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4: 1334-1357. Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476: 176-180. Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039. Allen, L.Z., Ishoey, T., Novotny, M.A., McLean, J.S., Lasken, R.S., and Williamson, S.J. (2011) Single virus genomics: a new tool for virus discovery. PLoS ONE 6: e17722. Paul, J.H. (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2: 579-589. Suttle, C.A., and Chan, A.M. (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92: 99-109. Borsheim, K.Y. (1993) Native marine bacteriophages. FEMS Microbiol Lett 102: 141-159. Yoon, H.S., Price, D.C., Stepanauskas, R., Rajah, V.D., Sieracki, M.E., Wilson, W.H., et al. (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714-717. Hoshino, T., and Schramm, A. (2010) Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12: 2508-2517. Bakshi, S., Siryaporn, A., Goulian, M., and Weisshaar, J.C. (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85: 21-38. Bobrow, M.N., Litt, G.L., Shaughnessy, K.J., Mayer, P.C., and Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150: 145-149. Weinbauer, M.G., and Höfle, M.G. (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64: 431-438. Sharon, I., Tzahor, S., Williamson, S., Shmoish, M., Man-Aharonovich, D., Rusch, D.B., et al. (2007) Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1: 492-501. Fuhrman, J.A., and Noble, R.T. (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236-1242. Suttle, C.A. (2007) Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 5: 801-812. Zeng, L., Skinner, S.O., Zong, C., Sippy, J., Feiss, M., and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141: 682-691. Holmfeldt, K., Middelboe, M., Nybroe, O., and Riemann, L. (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73: 6730-6739. Sullivan, M.B., Waterbury, J.B., and Chisholm, S.W. (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047-1051. Duhaime, M.B., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14: 2526-2537. Lindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M., and Chisholm, S.W. (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86-89. Ellis, E.L., and Delbrueck, M. (1939) The growth of bacteriophage. J Gen Physiol 22: 365-384. Lu, J., Chen, F., and Hodson, R.E. (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in ri 2010; 12 1993; 25 2011; 476 1990; 56 2004; 28 2010; 141 2008; 3 2007; 73 2012; 14 1990; 343 2008; 2 1998; 43 2009; 11 1992; 150 2010; 25 2007; 9 2007; 5 1996; 131 2007; 20 2010; 190 2007; 1 2010; 4 1994; 108 2006; 444 2004; 101 2011; 333 2007; 449 2012 1995; 59 2005; 41 2006; 8 2005; 438 2006; 4 1993; 102 2008; 320 2001; 67 2012; 35 2011; 3 2011; 6 1959 1998; 64 1996; 10 2011; 332 2011; 7 1993; 59 2002; 27 1995; 40 2012; 2 2012; 3 2003; 424 2009; 75 1993; 92 2002; 68 1939; 22 2003; 69 2011; 85 1999; 399 1999; 30 2013 2012; 6 2012; 434 2012; 88 2012; 85 16802857 - PLoS Biol. 2006 Jul;4(8):e234 20478257 - Cell. 2010 May 14;141(4):682-91 18958282 - PLoS One. 2008;3(10):e3550 19873108 - J Gen Physiol. 1939 Jan 20;22(3):365-84 22713159 - Environ Microbiol. 2012 Sep;14(9):2526-37 18043651 - ISME J. 2007 Oct;1(6):492-501 17766444 - Appl Environ Microbiol. 2007 Nov;73(21):6730-9 21769089 - Nat Chem Biol. 2011 Aug;7(8):484-7 20406291 - Environ Microbiol. 2010 Sep;12(9):2508-17 23761233 - Environ Microbiol Rep. 2011 Feb;3(1):69-78 23084423 - Virology. 2012 Dec 20;434(2):181-6 9464390 - Appl Environ Microbiol. 1998 Feb;64(2):535-42 22845467 - Environ Microbiol. 2013 May;15(5):1428-40 20090786 - ISME J. 2010 May;4(5):648-59 16349497 - Appl Environ Microbiol. 1998 Feb;64(2):431-8 16222247 - Nature. 2005 Nov 3;438(7064):86-9 18497287 - Science. 2008 May 23;320(5879):1034-9 10568837 - FEMS Microbiol Ecol. 1999 Dec 1;30(4):285-293 1613251 - J Immunol Methods. 1992 Jun 24;150(1-2):145-9 12902252 - Appl Environ Microbiol. 2003 Aug;69(8):4639-47 7535888 - Microbiol Rev. 1995 Mar;59(1):143-69 19175665 - Environ Microbiol. 2009 Jun;11(6):1386-94 22624875 - Mol Microbiol. 2012 Jul;85(1):21-38 12944965 - Nature. 2003 Aug 28;424(6952):1047-51 23320838 - Environ Microbiol. 2013 May;15(5):1356-76 2200342 - Appl Environ Microbiol. 1990 Jun;56(6):1919-25 11425754 - Appl Environ Microbiol. 2001 Jul;67(7):3285-90 12039771 - Appl Environ Microbiol. 2002 Jun;68(6):3094-101 21551060 - Science. 2011 May 6;332(6030):714-7 10376593 - Nature. 1999 Jun 10;399(6736):541-8 22739490 - ISME J. 2012 Dec;6(12):2178-87 21576847 - Microbes Environ. 2010;25(1):15-21 22134648 - ISME J. 2012 May;6(5):951-60 23222723 - J Bacteriol. 2013 Mar;195(5):941-50 18521076 - ISME J. 2008 Jun;2(6):579-89 21436882 - PLoS One. 2011;6(3):e17722 15109783 - FEMS Microbiol Rev. 2004 May;28(2):127-81 16349072 - Appl Environ Microbiol. 1993 Oct;59(10):3393-9 23140662 - Syst Appl Microbiol. 2012 Dec;35(8):549-52 16623740 - Environ Microbiol. 2006 May;8(5):827-35 9797256 - Appl Environ Microbiol. 1998 Nov;64(11):4128-33 21833083 - Nature. 2011 Aug 11;476(7359):176-80 21177804 - J Virol. 2011 Mar;85(5):2406-15 22172287 - J Microbiol Methods. 2012 Feb;88(2):218-23 17805294 - Nature. 2007 Sep 6;449(7158):83-6 15263091 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11007-12 17853907 - Nat Rev Microbiol. 2007 Oct;5(10):801-12 21719670 - Science. 2011 Jul 1;333(6038):58-62 24189813 - Microb Ecol. 1993 Mar;25(2):161-82 20629705 - Environ Microbiol. 2010 Nov;12(11):3057-73 12917674 - Nature. 2003 Aug 14;424(6950):741 20643879 - J Cell Biol. 2010 Jul 26;190(2):165-75 15256601 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11013-8 17151666 - Nature. 2006 Dec 7;444(7120):752-5 17564612 - Environ Microbiol. 2007 Jul;9(7):1790-800 23111870 - MBio. 2012;3(6). pii: e00373-12. doi: 10.1128/mBio.00373-12 19139231 - Appl Environ Microbiol. 2009 Mar;75(6):1745-9 20662890 - Environ Microbiol. 2010 Nov;12(11):3035-56 |
| References_xml | – reference: Waterbury, J.B., and Valois, F.W. (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater. Appl Environ Microbiol 59: 3393-3399. – reference: Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169. – reference: Weinbauer, M.G. (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28: 127-181. – reference: Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039. – reference: Lindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M., and Chisholm, S.W. (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86-89. – reference: Bernhard, J.M., Edgcomb, V.P., Casciotti, K.L., McIlvin, M.R., and Beaudoin, D.J. (2012) Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. ISME J 6: 951-960. – reference: Bragg, J.G., and Chisholm, S.W. (2008) Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS ONE 3: e3550. – reference: Breitbart, M., Thompson, L.R., Suttle, C.S., and Sullivan, M.B. (2007) Exploring the vast diversity of marine viruses. Oceanography 20: 353-362. – reference: Wichels, A., Biel, S.S., Gelderblom, H.R., Brinkhoff, T., Muyzer, G., and Schuett, C. (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64: 4128-4133. – reference: Comeau, A.M., and Suttle, C.A. (2007) Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia. Environ Microbiol 9: 1790-1800. – reference: Duhaime, M.B., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14: 2526-2537. – reference: Fuhrman, J.A., and Noble, R.T. (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236-1242. – reference: Holmström, C., and Kjelleberg, S. (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285-293. – reference: Suttle, C.A. (2007) Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 5: 801-812. – reference: Kenzaka, T., Tani, K., and Nasu, M. (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4: 648-659. – reference: Mann, N.H., Cook, A., Millard, A., Bailey, S., and Clokie, M. (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424: 741-741. – reference: Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101. – reference: Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2: 106-110. – reference: Bobrow, M.N., Litt, G.L., Shaughnessy, K.J., Mayer, P.C., and Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150: 145-149. – reference: Jiang, S.C., Kellogg, C.A., and Paul, J.H. (1998) Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64: 535-542. – reference: Millard, A., Clokie, M.R., Shub, D.A., and Mann, N.H. (2004) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 101: 11007-11012. – reference: Moraru, C., Lam, P., Fuchs, B.M., Kuypers, M.M.M., and Amann, R. (2010) GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12: 3057-3073. – reference: Wichels, A., Gerdts, G., and Schuett, C. (2002) Pseudoalteromonas spp. phages, a significant group of marine bacteriophages in the North Sea. Aquat Microb Ecol 27: 233-239. – reference: Adams, M.K. (1959) Bacteriophages. New York, USA: Interscience Publ. – reference: Kawakami, S., Hasegawa, T., Imachi, H., Yamaguchi, T., Harada, H., Ohashi, A., and Kubota, K. (2012) Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes. J Microbiol Methods 88: 218-223. – reference: Allen, L.Z., Ishoey, T., Novotny, M.A., McLean, J.S., Lasken, R.S., and Williamson, S.J. (2011) Single virus genomics: a new tool for virus discovery. PLoS ONE 6: e17722. – reference: Sullivan, M.B., Huang, K.H., Ignacio-Espinoza, J.C., Berlin, A.M., Kelly, L., Weigele, P.R., et al. (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12: 3035-3056. – reference: Labrie, S.J., Frois-Moniz, K., Osburne, M.S., Kelly, L., Roggensack, S.E., Sullivan, M.B., et al. (2013) Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. doi: 10.1111/1462-2920.12053 (in press) – reference: Lindell, D., Sullivan, M.B., Johnson, Z.I., Tolonen, A.C., Rohwer, F., and Chisholm, S.W. (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101: 11013-11018. – reference: Lu, J., Chen, F., and Hodson, R.E. (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol 67: 3285-3290. – reference: Marston, M.F., and Sallee, J.L. (2003) Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 69: 4639-4647. – reference: Clokie, M.R.J., Shan, J., Bailey, S., Jia, Y., and Krisch, H.M. (2006) Transcription of a 'photosynthetic' T4-type phage during infection of a marine cyanobacterium. Environ Microbiol 8: 827-835. – reference: Ellis, E.L., and Delbrueck, M. (1939) The growth of bacteriophage. J Gen Physiol 22: 365-384. – reference: Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476: 176-180. – reference: Moraru, C., and Amann, R. (2012) Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 35: 549-552. – reference: Kawakami, S., Kubota, K., Imachi, H., Yamaguchi, T., Harada, H., and Ohashi, A. (2010) Detection of single copy genes by two-pass tyramide signal amplification Fluorescence in situ hybridization (Two-Pass TSA-FISH) with single oligonucleotide probes. Microbes Environ 25: 15-21. – reference: Proctor, L.M., and Fuhrman, J.A. (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60-62. – reference: Hoshino, T., and Schramm, A. (2010) Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12: 2508-2517. – reference: Zeng, L., Skinner, S.O., Zong, C., Sippy, J., Feiss, M., and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141: 682-691. – reference: Lindell, D., Jaffe, J.D., Coleman, M.L., Futschik, M.E., Axmann, I.M., Rector, T., et al. (2007) Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449: 83-86. – reference: Raytcheva, D.A., Haase-Pettingell, C., Piret, J.M., and King, J.A. (2011) Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol 85: 2406-2415. – reference: Ptashne, M. (2011) Principles of a switch. Nat Chem Biol 7: 484-487. – reference: Lenk, S., Moraru, C., Hahnke, S., Arnds, J., Richter, M., Kube, M., et al. (2012) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 6: 2178-2187. – reference: Hurwitz, B.L., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol. doi 10.1111/j.1462-2920.2012.02836.x. (in press) – reference: Paul, J.H. (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2: 579-589. – reference: Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., et al. (2006) Climate-driven trends in contemporary ocean productivity. Nature 444: 752-755. – reference: Sharon, I., Tzahor, S., Williamson, S., Shmoish, M., Man-Aharonovich, D., Rusch, D.B., et al. (2007) Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1: 492-501. – reference: Hellweger, F.L. (2009) Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ Microbiol 11: 1386-1394. – reference: Bakshi, S., Siryaporn, A., Goulian, M., and Weisshaar, J.C. (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85: 21-38. – reference: Weinbauer, M.G., and Peduzzi, P. (1994) Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar Ecol Prog Ser 108: 11-20. – reference: Wang, I.-N., Dykhuizen, D.E., and Slobodkin, L.B. (1996) The evolution of phage lysis timing. Evol Ecol 10: 545-558. – reference: Suttle, C.A., and Chan, A.M. (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92: 99-109. – reference: Yoon, H.S., Price, D.C., Stepanauskas, R., Rajah, V.D., Sieracki, M.E., Wilson, W.H., et al. (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714-717. – reference: Deng, L., Gregory, A., Yilmaz, S., Poulos, B.T., Hugenholtz, P., and Sullivan, M.B. (2012) Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. mBio 3: e00373-12. – reference: Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541-548. – reference: Zhang, Y., and Jiao, N. (2009) Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol 75: 1745-1749. – reference: Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190: 165-175. – reference: Weinbauer, M.G., and Höfle, M.G. (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64: 431-438. – reference: Wilhelm, S.W., Weinbauer, M.G., Suttle, C.A., and Jeffrey, W.H. (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43: 586-592. – reference: Sullivan, M.B., Waterbury, J.B., and Chisholm, S.W. (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047-1051. – reference: Holmfeldt, K., Middelboe, M., Nybroe, O., and Riemann, L. (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73: 6730-6739. – reference: Brum, J.R., Steward, G.F., Jiang, S.C., and Jellison, R. (2005) Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Microb Ecol 41: 247-260. – reference: Moraru, C., Moraru, G., Fuchs, B.M., and Amann, R. (2011) Concepts and software for a rational design of polynucleotide probes. Environ Microbiol Rep 3: 69-78. – reference: Duhaime, M.B., and Sullivan, M.B. (2012) Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology 434: 181-186. – reference: Sullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., and Chisholm, S.W. (2006) Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4: 1334-1357. – reference: Kristensen, D.M., Waller, A.S., Yamada, T., Bork, P., Mushegian, A.R., and Koonin, E.V. (2012) Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J Bacteriol. doi: 10.1128/jb.01801-12 (in press) – reference: Steward, G.F., Smith, D.C., and Azam, F. (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131: 287-300. – reference: Tadmor, A.D., Ottesen, E.A., Leadbetter, J.R., and Phillips, R. (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333: 58-62. – reference: Proctor, L.M., Okubo, A., and Fuhrman, J.A. (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25: 161-182. – reference: Amann, R., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919-1925. – reference: Borsheim, K.Y. (1993) Native marine bacteriophages. FEMS Microbiol Lett 102: 141-159. – volume: 85 start-page: 2406 year: 2011 end-page: 2415 article-title: Intracellular assembly of cyanophage Syn5 proceeds through a scaffold‐containing procapsid publication-title: J Virol – volume: 332 start-page: 714 year: 2011 end-page: 717 article-title: Single‐cell genomics reveals organismal interactions in uncultivated marine protists publication-title: Science – volume: 22 start-page: 365 year: 1939 end-page: 384 article-title: The growth of bacteriophage publication-title: J Gen Physiol – volume: 12 start-page: 3035 year: 2010 end-page: 3056 article-title: Genomic analysis of oceanic cyanobacterial myoviruses compared with T4‐like myoviruses from diverse hosts and environments publication-title: Environ Microbiol – volume: 28 start-page: 127 year: 2004 end-page: 181 article-title: Ecology of prokaryotic viruses publication-title: FEMS Microbiol Rev – volume: 3 start-page: e3550 year: 2008 article-title: Modeling the fitness consequences of a cyanophage‐encoded photosynthesis gene publication-title: PLoS ONE – volume: 333 start-page: 58 year: 2011 end-page: 62 article-title: Probing individual environmental bacteria for viruses by using microfluidic digital PCR publication-title: Science – volume: 40 start-page: 1236 year: 1995 end-page: 1242 article-title: Viruses and protists cause similar bacterial mortality in coastal seawater publication-title: Limnol Oceanogr – volume: 67 start-page: 3285 year: 2001 end-page: 3290 article-title: Distribution, isolation, host specificity, and diversity of cyanophages infecting marine spp. in river estuaries publication-title: Appl Environ Microbiol – volume: 30 start-page: 285 year: 1999 end-page: 293 article-title: Marine species are associated with higher organisms and produce biologically active extracellular agents publication-title: FEMS Microbiol Ecol – volume: 2 start-page: 579 year: 2008 end-page: 589 article-title: Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? publication-title: ISME J – volume: 3 start-page: e00373‐12 year: 2012 article-title: Contrasting life strategies of viruses that infect photo‐ and heterotrophic bacteria, as revealed by viral tagging publication-title: mBio – volume: 101 start-page: 11013 year: 2004 end-page: 11018 article-title: Transfer of photosynthesis genes to and from viruses publication-title: Proc Natl Acad Sci USA – volume: 69 start-page: 4639 year: 2003 end-page: 4647 article-title: Genetic diversity and temporal variation in the cyanophage community infecting marine species in Rhode Island's coastal waters publication-title: Appl Environ Microbiol – volume: 41 start-page: 247 year: 2005 end-page: 260 article-title: Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake publication-title: Aquat Microb Ecol – volume: 424 start-page: 1047 year: 2003 end-page: 1051 article-title: Cyanophages infecting the oceanic cyanobacterium publication-title: Nature – volume: 73 start-page: 6730 year: 2007 end-page: 6739 article-title: Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their hosts publication-title: Appl Environ Microbiol – volume: 434 start-page: 181 year: 2012 end-page: 186 article-title: Ocean viruses: rigorously evaluating the metagenomic sample‐to‐sequence pipeline publication-title: Virology – volume: 88 start-page: 218 year: 2012 end-page: 223 article-title: Detection of single‐copy functional genes in prokaryotic cells by two‐pass TSA‐FISH with polynucleotide probes publication-title: J Microbiol Methods – year: 1959 – volume: 59 start-page: 3393 year: 1993 end-page: 3399 article-title: Resistance to co‐occurring phages enables marine communities to coexist with cyanophage abundant in seawater publication-title: Appl Environ Microbiol – volume: 444 start-page: 752 year: 2006 end-page: 755 article-title: Climate‐driven trends in contemporary ocean productivity publication-title: Nature – volume: 6 start-page: 951 year: 2012 end-page: 960 article-title: Denitrification likely catalyzed by endobionts in an allogromiid foraminifer publication-title: ISME J – year: 2012 article-title: Orthologous gene clusters and taxon signature genes for viruses of prokaryotes publication-title: J Bacteriol – volume: 6 start-page: 2178 year: 2012 end-page: 2187 article-title: Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes publication-title: ISME J – volume: 2 start-page: 106 year: 2012 end-page: 110 article-title: Microbial mediation of carbon‐cycle feedbacks to climate warming publication-title: Nat Clim Change – volume: 131 start-page: 287 year: 1996 end-page: 300 article-title: Abundance and production of bacteria and viruses in the Bering and Chukchi Seas publication-title: Mar Ecol Prog Ser – volume: 476 start-page: 176 year: 2011 end-page: 180 article-title: Hydrogen is an energy source for hydrothermal vent symbioses publication-title: Nature – volume: 343 start-page: 60 year: 1990 end-page: 62 article-title: Viral mortality of marine bacteria and cyanobacteria publication-title: Nature – volume: 56 start-page: 1919 year: 1990 end-page: 1925 article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations publication-title: Appl Environ Microbiol – volume: 3 start-page: 69 year: 2011 end-page: 78 article-title: Concepts and software for a rational design of polynucleotide probes publication-title: Environ Microbiol Rep – volume: 150 start-page: 145 year: 1992 end-page: 149 article-title: The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats publication-title: J Immunol Methods – volume: 438 start-page: 86 year: 2005 end-page: 89 article-title: Photosynthesis genes in marine viruses yield proteins during host infection publication-title: Nature – volume: 102 start-page: 141 year: 1993 end-page: 159 article-title: Native marine bacteriophages publication-title: FEMS Microbiol Lett – volume: 399 start-page: 541 year: 1999 end-page: 548 article-title: Marine viruses and their biogeochemical and ecological effects publication-title: Nature – volume: 9 start-page: 1790 year: 2007 end-page: 1800 article-title: Distribution, genetic richness and phage sensitivity of spp. from coastal British Columbia publication-title: Environ Microbiol – volume: 424 start-page: 741 year: 2003 end-page: 741 article-title: Marine ecosystems: bacterial photosynthesis genes in a virus publication-title: Nature – year: 2013 article-title: Genomes of marine cyanopodoviruses reveal multiple origins of diversity publication-title: Environ Microbiol – volume: 92 start-page: 99 year: 1993 end-page: 109 article-title: Marine cyanophages infecting oceanic and coastal strains of : abundance, morphology, cross‐infectivity and growth characteristics publication-title: Mar Ecol Prog Ser – volume: 11 start-page: 1386 year: 2009 end-page: 1394 article-title: Carrying photosynthesis genes increases ecological fitness of cyanophage publication-title: Environ Microbiol – volume: 25 start-page: 15 year: 2010 end-page: 21 article-title: Detection of single copy genes by two‐pass tyramide signal amplification Fluorescence hybridization (Two‐Pass TSA‐FISH) with single oligonucleotide probes publication-title: Microbes Environ – volume: 64 start-page: 535 year: 1998 end-page: 542 article-title: Characterization of marine temperate phage‐host systems isolated from Mamala Bay, Oahu, Hawaii publication-title: Appl Environ Microbiol – volume: 5 start-page: 801 year: 2007 end-page: 812 article-title: Marine viruses – major players in the global ecosystem publication-title: Nat Rev Microbiol – volume: 68 start-page: 3094 year: 2002 end-page: 3101 article-title: Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria publication-title: Appl Environ Microbiol – volume: 108 start-page: 11 year: 1994 end-page: 20 article-title: Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes publication-title: Mar Ecol Prog Ser – volume: 20 start-page: 353 year: 2007 end-page: 362 article-title: Exploring the vast diversity of marine viruses publication-title: Oceanography – volume: 12 start-page: 2508 year: 2010 end-page: 2517 article-title: Detection of denitrification genes by rolling circle amplification‐fluorescence hybridization to link metabolic potential with identity inside bacterial cells publication-title: Environ Microbiol – volume: 35 start-page: 549 year: 2012 end-page: 552 article-title: Crystal ball: fluorescence hybridization in the age of super‐resolution microscopy publication-title: Syst Appl Microbiol – volume: 320 start-page: 1034 year: 2008 end-page: 1039 article-title: The microbial engines that drive Earth's biogeochemical cycles publication-title: Science – volume: 64 start-page: 4128 year: 1998 end-page: 4133 article-title: Bacteriophage diversity in the North Sea publication-title: Appl Environ Microbiol – year: 2012 article-title: Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics publication-title: Environ Microbiol – volume: 27 start-page: 233 year: 2002 end-page: 239 article-title: spp. phages, a significant group of marine bacteriophages in the North Sea publication-title: Aquat Microb Ecol – volume: 85 start-page: 21 year: 2012 end-page: 38 article-title: Superresolution imaging of ribosomes and RNA polymerase in live cells publication-title: Mol Microbiol – volume: 4 start-page: 648 year: 2010 end-page: 659 article-title: High‐frequency phage‐mediated gene transfer in freshwater environments determined at single‐cell level publication-title: ISME J – volume: 449 start-page: 83 year: 2007 end-page: 86 article-title: Genome‐wide expression dynamics of a marine virus and host reveal features of co‐evolution publication-title: Nature – volume: 6 start-page: e17722 year: 2011 article-title: Single virus genomics: a new tool for virus discovery publication-title: PLoS ONE – volume: 75 start-page: 1745 year: 2009 end-page: 1749 article-title: Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium OCh114 publication-title: Appl Environ Microbiol – volume: 4 start-page: 1334 year: 2006 end-page: 1357 article-title: Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts publication-title: PLoS Biol – volume: 64 start-page: 431 year: 1998 end-page: 438 article-title: Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake publication-title: Appl Environ Microbiol – volume: 101 start-page: 11007 year: 2004 end-page: 11012 article-title: Genetic organization of the region in phages infecting marine strains publication-title: Proc Natl Acad Sci USA – volume: 1 start-page: 492 year: 2007 end-page: 501 article-title: Viral photosynthetic reaction center genes and transcripts in the marine environment publication-title: ISME J – volume: 59 start-page: 143 year: 1995 end-page: 169 article-title: Phylogenetic identification and detection of individual microbial cells without cultivation publication-title: Microbiol Rev – volume: 43 start-page: 586 year: 1998 end-page: 592 article-title: The role of sunlight in the removal and repair of viruses in the sea publication-title: Limnol Oceanogr – volume: 10 start-page: 545 year: 1996 end-page: 558 article-title: The evolution of phage lysis timing publication-title: Evol Ecol – volume: 141 start-page: 682 year: 2010 end-page: 691 article-title: Decision making at a subcellular level determines the outcome of bacteriophage infection publication-title: Cell – volume: 8 start-page: 827 year: 2006 end-page: 835 article-title: Transcription of a ‘photosynthetic’ T4‐type phage during infection of a marine cyanobacterium publication-title: Environ Microbiol – volume: 25 start-page: 161 year: 1993 end-page: 182 article-title: Calibrating estimates of phage‐induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one‐step growth experiments publication-title: Microb Ecol – volume: 12 start-page: 3057 year: 2010 end-page: 3073 article-title: GeneFISH – an technique for linking gene presence and cell identity in environmental microorganisms publication-title: Environ Microbiol – volume: 14 start-page: 2526 year: 2012 end-page: 2537 article-title: Towards quantitative metagenomics of wild viruses and other ultra‐low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method publication-title: Environ Microbiol – volume: 190 start-page: 165 year: 2010 end-page: 175 article-title: A guide to super‐resolution fluorescence microscopy publication-title: J Cell Biol – volume: 7 start-page: 484 year: 2011 end-page: 487 article-title: Principles of a switch publication-title: Nat Chem Biol – reference: 18043651 - ISME J. 2007 Oct;1(6):492-501 – reference: 20478257 - Cell. 2010 May 14;141(4):682-91 – reference: 17805294 - Nature. 2007 Sep 6;449(7158):83-6 – reference: 23222723 - J Bacteriol. 2013 Mar;195(5):941-50 – reference: 21833083 - Nature. 2011 Aug 11;476(7359):176-80 – reference: 16349072 - Appl Environ Microbiol. 1993 Oct;59(10):3393-9 – reference: 22172287 - J Microbiol Methods. 2012 Feb;88(2):218-23 – reference: 20662890 - Environ Microbiol. 2010 Nov;12(11):3035-56 – reference: 16222247 - Nature. 2005 Nov 3;438(7064):86-9 – reference: 16623740 - Environ Microbiol. 2006 May;8(5):827-35 – reference: 23140662 - Syst Appl Microbiol. 2012 Dec;35(8):549-52 – reference: 23111870 - MBio. 2012;3(6). pii: e00373-12. doi: 10.1128/mBio.00373-12 – reference: 19139231 - Appl Environ Microbiol. 2009 Mar;75(6):1745-9 – reference: 18958282 - PLoS One. 2008;3(10):e3550 – reference: 21719670 - Science. 2011 Jul 1;333(6038):58-62 – reference: 20406291 - Environ Microbiol. 2010 Sep;12(9):2508-17 – reference: 18497287 - Science. 2008 May 23;320(5879):1034-9 – reference: 24189813 - Microb Ecol. 1993 Mar;25(2):161-82 – reference: 20090786 - ISME J. 2010 May;4(5):648-59 – reference: 22739490 - ISME J. 2012 Dec;6(12):2178-87 – reference: 10568837 - FEMS Microbiol Ecol. 1999 Dec 1;30(4):285-293 – reference: 12944965 - Nature. 2003 Aug 28;424(6952):1047-51 – reference: 21551060 - Science. 2011 May 6;332(6030):714-7 – reference: 23320838 - Environ Microbiol. 2013 May;15(5):1356-76 – reference: 9797256 - Appl Environ Microbiol. 1998 Nov;64(11):4128-33 – reference: 20643879 - J Cell Biol. 2010 Jul 26;190(2):165-75 – reference: 12902252 - Appl Environ Microbiol. 2003 Aug;69(8):4639-47 – reference: 12039771 - Appl Environ Microbiol. 2002 Jun;68(6):3094-101 – reference: 16802857 - PLoS Biol. 2006 Jul;4(8):e234 – reference: 2200342 - Appl Environ Microbiol. 1990 Jun;56(6):1919-25 – reference: 23761233 - Environ Microbiol Rep. 2011 Feb;3(1):69-78 – reference: 18521076 - ISME J. 2008 Jun;2(6):579-89 – reference: 9464390 - Appl Environ Microbiol. 1998 Feb;64(2):535-42 – reference: 23084423 - Virology. 2012 Dec 20;434(2):181-6 – reference: 21576847 - Microbes Environ. 2010;25(1):15-21 – reference: 1613251 - J Immunol Methods. 1992 Jun 24;150(1-2):145-9 – reference: 21769089 - Nat Chem Biol. 2011 Aug;7(8):484-7 – reference: 22624875 - Mol Microbiol. 2012 Jul;85(1):21-38 – reference: 17853907 - Nat Rev Microbiol. 2007 Oct;5(10):801-12 – reference: 10376593 - Nature. 1999 Jun 10;399(6736):541-8 – reference: 22845467 - Environ Microbiol. 2013 May;15(5):1428-40 – reference: 19873108 - J Gen Physiol. 1939 Jan 20;22(3):365-84 – reference: 12917674 - Nature. 2003 Aug 14;424(6950):741 – reference: 17564612 - Environ Microbiol. 2007 Jul;9(7):1790-800 – reference: 11425754 - Appl Environ Microbiol. 2001 Jul;67(7):3285-90 – reference: 21436882 - PLoS One. 2011;6(3):e17722 – reference: 22134648 - ISME J. 2012 May;6(5):951-60 – reference: 22713159 - Environ Microbiol. 2012 Sep;14(9):2526-37 – reference: 7535888 - Microbiol Rev. 1995 Mar;59(1):143-69 – reference: 17151666 - Nature. 2006 Dec 7;444(7120):752-5 – reference: 20629705 - Environ Microbiol. 2010 Nov;12(11):3057-73 – reference: 21177804 - J Virol. 2011 Mar;85(5):2406-15 – reference: 15263091 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11007-12 – reference: 17766444 - Appl Environ Microbiol. 2007 Nov;73(21):6730-9 – reference: 15256601 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11013-8 – reference: 15109783 - FEMS Microbiol Rev. 2004 May;28(2):127-81 – reference: 16349497 - Appl Environ Microbiol. 1998 Feb;64(2):431-8 – reference: 19175665 - Environ Microbiol. 2009 Jun;11(6):1386-94 |
| SSID | ssj0017370 |
| Score | 2.4395998 |
| Snippet | Summary
Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire,... Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and... Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire,... |
| SourceID | pubmedcentral proquest pubmed pascalfrancis wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 2306 |
| SubjectTerms | Animal, plant and microbial ecology Bacteriology Bacteriophages - genetics Biogeochemical cycles Biological and medical sciences Deoxyribonucleic acid DNA Environmental surveys Fundamental and applied biological sciences. Psychology General aspects Host-Pathogen Interactions Intracellular Space - virology Microbial ecology Microbiology Podoviridae - physiology Population Population ecology Population structure Pseudoalteromonas - virology Replicative cycle, interference, host-virus relations, pathogenicity, miscellaneous strains Reproducibility of Results Seawater - microbiology Seawater - virology Viral infections Virology Virology - methods |
| Title | Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses |
| URI | https://api.istex.fr/ark:/67375/WNG-07K4RS7G-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12100 https://www.ncbi.nlm.nih.gov/pubmed/23489642 https://www.proquest.com/docview/1416699759 https://www.proquest.com/docview/1417534761 https://www.proquest.com/docview/1430859565 https://pubmed.ncbi.nlm.nih.gov/PMC3884771 |
| Volume | 15 |
| WOSCitedRecordID | wos000322625500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yq-DFb9fqOkQQTxaajzbJUdTZFZdh2dnVuZW0SdnBoTNMZ8T15M2rf6N_ie-lnbqjIgheSqF5SZO8l7zX_vJ-hDxNKpZYG_hdrI1lydPYauPiKvOyEOBvFAFt8e5IjUZ6MjHHHZoQz8K0-SH6D25oGWG9RgO3RXPJyMHEeYxcS5ggIYGofZcxoZG9gcvj_keCEoEvrivMeJfdB8E8v1QA3ikO7CdER9oGBqhqmS3-5Hr-jqC87NmGrWl48z906ha50fml9EWrSLfJFV_fIddapsqLu-TrGLa4mf_-5Rt-6ae2dnTRU3_RGSKPKMKFZ3SD7qqpa8nuG4pZomAfcrS4oItzWMCGb8aHz6mlLX01Xc1BtsHTnZ89yENXsRHEx4aGqqX3WPm68c09cjZ8ffryMO44HOIpeJpJrLyWxqXSJ7DqwuRLPJPiGDM61VUgFS-4yzR34MaootDWlpnjUjNrSi1cKu6TnXpe-weEuipLKmeYLz3m1NGWc1emWpTCyUppFpFnYQLzRZunI7fLDwhbU2n-fnSQJ-qtPBmrg_w0IoOtGe4FOLyjElkSkf3NlOedSTcQI7EsM0alJiJP-sdgjDgktvbzdSgD4Z9UGftbGRGSymVpRPZaLfr5AkJqAxFhRNSWfvUFMBn49pN6eh6SggsNfoaCdlv96iU2QR5qVo6alQfNysHKw83DfxV4RK7zQAmCIMh9srNarv1jcrX8uJo2y0GwPriqiR6Q3Vcnw7OjH44DMew |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQAoIL3wuBZTES4kSkxHZi-4gQ3a62VIgW2JvlxI62okqrpkUsJ25c-Y38EmacNrSAkJC4RYrHduwZe8Z5nkfIk6RKE2sDv4u1sShZFlulXVzlXhQc_I0ioC3eDeRwqE5P9fZdmDY_RHfghpYR1ms0cDyQ3rJysHEWI9kSZkhIIGy_KGCvQV1n4nX3J0HyQBi3LpyydXofRPP8UgG4pziynxAeaRsYoaqltviT7_k7hHLbtQ17U-_6__iqG-Ta2jOlz1tVukku-PoWudxyVZ7fJl9HsMlN_fcv3_Csn9ra0XlH_kWniD2iCBie0g2-q6aupbtvKOaJgp3I0eKczs9gCesdj_rPqKUtgTVdzkC2wfudnz3Iw7diI4iQDQ1VC--x8lXjmzvkbe_l-EU_XrM4xBPwNZNYeiW0y4RPYN2F6Rd4K8WlqVaZqgKteMFcrpgDR0YWhbK2zB0TKrW6VNxlfJ_s1bPa3yPUVXlSOZ360mNWHWUZc2WmeMmdqKRKI_I0zKCZt5k6jF18QOCazMz74ZFJ5Il4M5JHZhyRw50p7gQY9FHyPInIwWbOzdqoG4iS0jzXWmY6Io-712COOCS29rNVKAMBoJB5-rcyPKSVy7OI3G3V6GcHuFAaYsKIyB0F6wpgOvDdN_XkLKQF5wo8DQnttgrWSWzCPNQsg5plgmYZsPPwcP9fBR6RK_3xq4EZHA9PHpCrLBCEICTygOwtFyv_kFwqPy4nzeIwmOIP9vszTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQB4jL-DkIjGEkxIlIiePE9hExuk2rKrRusJvlxI5WUaVV006MEzeu_I38JbznpKEFhITErVL84sR-z34v_fx9hLyIyjgyxuu7GBPygqWhkcqGZeZ4nkC-kXu0xfuBGA7l-blaPwvT8EN0H9wwMvx6jQHuZrZci3KIcRai2BIyJERQtm9xlJLpka39k_7ZoPsvQSReMq5tHrOW4AfxPL_cAhJUHNtPCJA0NYxR2Yhb_Cn7_B1EuZ7c-t2pf_t_vNcdst3mpvR140x3yTVX3SM3GrXKq_vk6wi2uYn7_uUbfu2nprJ01sl_0QmijyhChid0hfCqqG0E72uKTFGwF1maX9HZBSxi_aPR4StqaCNhTRdTsK3xhOdnB_bwrtgJYmR9R-XcObz5snb1A3LWf3v65jBsdRzCMWSbUSic5Mqm3EWw8oIDcDyXYuNYyVSWXlg8ZzaTzEIqI_JcGlNklnEZG1XIxKbJDulV08o9ItSWWVRaFbvCIa-ONIzZIpVJkVheChkH5KWfQT1ruDq0mX9E6JpI9YfhgY7EMT8ZiQN9GpC9jSnuDBg8o0iyKCC7qznXbVjXUCfFWaaUSFVAnneXISBxSEzlpkvfBkpALrL4b20STyyXpQF52LjRzwdIuFRQFQZEbDhY1wAJwTevVOMLTwyeSMg1BPTbOFhnsSr00LM0epb2nqUh0v2Px_9q8IzcfLff14Oj4fETcot5hRDERO6S3mK-dE_J9eJyMa7ne20s_gDPSzRl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+and+population+level+viral+infection+dynamics+revealed+by+phageFISH%2C+a+method+to+visualize+intracellular+and+free+viruses&rft.jtitle=Environmental+microbiology&rft.au=ALLERS%2C+Elke&rft.au=MORARU%2C+Cristina&rft.au=DUHAIME%2C+Melissa+B&rft.au=BENEZE%2C+Erica&rft.date=2013-08-01&rft.pub=Blackwell&rft.issn=1462-2912&rft.volume=15&rft.issue=8&rft.spage=2306&rft.epage=2318&rft_id=info:doi/10.1111%2F1462-2920.12100&rft.externalDBID=n%2Fa&rft.externalDocID=27627360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |