Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses

Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique‐limited. Here, we introduce phageF...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental microbiology Ročník 15; číslo 8; s. 2306 - 2318
Hlavní autoři: Allers, Elke, Moraru, Cristina, Duhaime, Melissa B., Beneze, Erica, Solonenko, Natalie, Barrero-Canosa, Jimena, Amann, Rudolf, Sullivan, Matthew B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.08.2013
Blackwell
Wiley Subscription Services, Inc
John Wiley & Sons Ltd
Témata:
ISSN:1462-2912, 1462-2920, 1462-2920
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique‐limited. Here, we introduce phageFISH – a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra‐ and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus–gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per‐cell relative measurements of phage DNA, enabling single‐cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population‐averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage–host system, and debut phageFISH as a much‐needed tool for studying phage–host interactions in the laboratory, with great promise for environmental surveys and lineage‐specific population ecology of free phages.
AbstractList Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.
Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage–host interactions is technique‐limited. Here, we introduce phageFISH – a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra‐ and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus–gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per‐cell relative measurements of phage DNA, enabling single‐cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population‐averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage–host system, and debut phageFISH as a much‐needed tool for studying phage–host interactions in the laboratory, with great promise for environmental surveys and lineage‐specific population ecology of free phages.
Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to >92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages [PUBLICATION ABSTRACT].
Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and metabolic capacity. However, our ability to understand and quantify phage-host interactions is technique-limited. Here, we introduce phageFISH - a markedly improved geneFISH protocol that increases gene detection efficiency from 40% to > 92% and is optimized for detection and visualization of intra- and extracellular phage DNA. The application of phageFISH to characterize infection dynamics in a marine podovirus-gammaproteobacterial host model system corroborated classical metrics (qPCR, plaque assay, FVIC, DAPI) and outperformed most of them to reveal new biology. PhageFISH detected both replicating and encapsidated (intracellular and extracellular) phage DNA, while simultaneously identifying and quantifying host cells during all stages of infection. Additionally, phageFISH allowed per-cell relative measurements of phage DNA, enabling single-cell documentation of infection status (e.g. early vs late stage infections). Further, it discriminated between two waves of infection, which no other measurement could due to population-averaged signals. Together, these findings richly characterize the infection dynamics of a novel model phage-host system, and debut phageFISH as a much-needed tool for studying phage-host interactions in the laboratory, with great promise for environmental surveys and lineage-specific population ecology of free phages.
Author Sullivan, Matthew B.
Allers, Elke
Barrero-Canosa, Jimena
Moraru, Cristina
Duhaime, Melissa B.
Beneze, Erica
Solonenko, Natalie
Amann, Rudolf
Author_xml – sequence: 1
  givenname: Elke
  surname: Allers
  fullname: Allers, Elke
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA
– sequence: 2
  givenname: Cristina
  surname: Moraru
  fullname: Moraru, Cristina
  organization: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany
– sequence: 3
  givenname: Melissa B.
  surname: Duhaime
  fullname: Duhaime, Melissa B.
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA
– sequence: 4
  givenname: Erica
  surname: Beneze
  fullname: Beneze, Erica
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA
– sequence: 5
  givenname: Natalie
  surname: Solonenko
  fullname: Solonenko, Natalie
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA
– sequence: 6
  givenname: Jimena
  surname: Barrero-Canosa
  fullname: Barrero-Canosa, Jimena
  organization: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany
– sequence: 7
  givenname: Rudolf
  surname: Amann
  fullname: Amann, Rudolf
  email: mbsulli@email.arizona.edu
  organization: Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, 28359, Bremen, Germany
– sequence: 8
  givenname: Matthew B.
  surname: Sullivan
  fullname: Sullivan, Matthew B.
  email: mbsulli@email.arizona.edu
  organization: Department of Ecology and Evolutionary Biology, University of Arizona, Life Sciences South1007 East Lowell Street, AZ, 85721, Tucson, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27627360$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23489642$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuP0zAUhSM0iHnAmh2KhJBYELAdv7IZCY1mOhUDSHQQS8uJb1sPrlPspFD2_G-ctoTHCm_i-H7n-No-p9mRbz1k2WOMXuI0XmHKSUEqkn4JRuhedjKuHI1zTI6z0xjvEMKiFOhBdkxKKitOyUn2Y2b9wkHRgHO59iZft-ve6c62PnewAZdvbNAut34OzW7VbL1e2SbmIZW1A5PX23y91Au4ms6uX-Q6X0G3bE3etUkbe-3sd0j6Luhhk2QedhvNA8Bg3keID7P7c-0iPDp8z7KPV5e3F9fFzfvJ9OL1TWEZEqgQIGllGAUkOKlLQRHi0mBcSSbnJJ0W18RwSQwWTNS11LrhhlCJddXI0rDyLDvf-677egWmgaErp9bBrnTYqlZb9XfF26VatBtVSkmFwMng-cEgtF96iJ1a2TgcS3to-6gwLZFkFePsP9DUZUkFH1yf_oPetX3w6SYGivOqEqxK1JM_mx-7_vWYCXh2AHRstJsH7Rsbf3Pp0kTJUeLYnvtqHWzHOkZqyJQaUqOGBKldptTl2-luknTFXmdjB99GnQ6fFU_BYurTu4lC4g39MBMTdVv-BGMuzlI
ContentType Journal Article
Copyright 2013 John Wiley & Sons Ltd and Society for Applied Microbiology
2014 INIST-CNRS
2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Copyright © 2013 John Wiley & Sons Ltd
Copyright © 2013 John Wiley & Sons Ltd 2013
Copyright_xml – notice: 2013 John Wiley & Sons Ltd and Society for Applied Microbiology
– notice: 2014 INIST-CNRS
– notice: 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
– notice: Copyright © 2013 John Wiley & Sons Ltd
– notice: Copyright © 2013 John Wiley & Sons Ltd 2013
DBID BSCLL
24P
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
5PM
DOI 10.1111/1462-2920.12100
DatabaseName Istex
Wiley Online Library Open Access
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2318
ExternalDocumentID PMC3884771
3034529341
23489642
27627360
EMI12100
ark_67375_WNG_07K4RS7G_T
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Max Planck Society
– fundername: Deutsche Forschungsgemeinschaft
– fundername: Biosphere2
– fundername: BIO5
– fundername: Gordon and Betty Moore Foundation
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
24P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
5PM
ID FETCH-LOGICAL-i5070-7e849d54e0762b3740068d119858f21461b2d682d1757bb8aac6d2481a9c83d53
IEDL.DBID 24P
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322625500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Tue Nov 04 01:55:48 EST 2025
Tue Oct 07 09:35:46 EDT 2025
Fri Jul 11 08:50:48 EDT 2025
Fri Jul 25 10:23:50 EDT 2025
Mon Jul 21 05:42:00 EDT 2025
Wed Apr 02 07:25:21 EDT 2025
Wed Jan 22 17:06:41 EST 2025
Sun Sep 21 06:20:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Infection
Virus
Cell population
Dynamics
Viral disease
Isolated cell
Intracellular
Method
Language English
License CC BY 4.0
2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5070-7e849d54e0762b3740068d119858f21461b2d682d1757bb8aac6d2481a9c83d53
Notes BIO5
istex:BAB283F7DFE189E3D5A98145742BDBE02BFF1D6C
SI Text. Table S1. Polynucleotide probes targeting a region spanning a phage gene of unknown function (abbreviated here as unk) in the Pseudoalteromonas phage PSA-HP1 genome (genome position 8564-13 387 bp). Table S2. Q-PCR primer and amplicon sequences. Table S3. Calculated and measured Tm for the polynucleotides forming the unk probe mix. Fig. S1. geneFISH protocol optimization. A. Genome map of phage PSA-HP1. The six (300 bp each) probe-target regions are indicated in orange. Probes target unknown phage gene, unk (grey). B. Variation of the gene detection efficiency with increasing number of polynuclotide probes. Escherichia coli low target copy clones (3-8 copies per cell) were hybridized with an increasing number of polynucleotide probes targeting the unk gene. As negative control (no unk gene), E. coli strain B/R cells were used. The detection efficiency is defined as the fraction of all cells showing a gene positive signal. C. Detection of unk gene in high target copy cells using three polynucleotide probes - all the cells have a gene signal, resulting in 100% detection efficiency. Top image - overlay image between 16S rRNA signal and gene signal. Bottom image - gene signal. Scale bar = 5 μm. Exposure time (ms, milliseconds) is described for the gene image. D. Appearance of gene signals for different dextran sulfate concentrations (10%, 20% and 30%). All pictures were taken using the same exposure time. Concentrations of 20% and 30% dextran sulfate resulted in a much sharper signal as compared with 10%. Scale bar = 5 μm. E. Gene detection efficiency for different dextran sulfate concentrations (10%, 20% and 30%). Blue bars = low target gene copy cells, red bars = negative control cells. While the detection efficiency was high for all concentrations, the background level (% of false positives in the negative control) increased with the dextran sulfate concentration. F. Variation of the gene (unk) signal intensity and spread through the cell with variation of the gene probe and target copy number. Scale bar = 5 μm. Exposure times (ms, milliseconds) are described for the gene images. The signal intensity increases with the increasing number of probes (higher exposure time was necessary when hybridizing with one probe). The signal spread and intensity increases with the increase in the target number, from dot-like for low target copy cells to whole cell signal for high target copy cells. For high target copy number cells, starting with ∼ 6 probes, the signal does not increase anymore with the probe number, most likely due to a saturation of tyramide binding sites. Fig. S2. Pseudoalteromonas sp. H100 growth curves based on triplicate measurements. The bacterial host was physiologically acclimated for three generations resulting in 0.72 doublings per hour (± 0.06 doublings per hour, n = 3) during exponential growth. Error bars indicate standard deviation. Fig. S3. Virus assays including controls. A. Extracellular phage DNA as measured by quantitative PCR in infected (black circles) and control (white circles) cultures. B. Extracellular phage number as measured by PFU in infected (black circles) and control (white circles) cultures. Control data are zero unless plotted otherwise. Fig. S4. Determination of phage signal size classes and segregation of the two waves of infection. A. Plot of signal size versus signal intensity for T0-T81. B. Plots of signal size versus signal intensity for each of the individual time points (from T0 to T81). Blue lines delimitate signal size classes. Class I (< 0.4 μm2): most probably new infections; Class II (0.4-1.4 μm2): most probably replicating infections; Class III (1.4-7.0 μm2): most probably advanced infections. To establish the upper and lower limits of the smallest, first size class, we assumed that T0 signals represented new infections - these signals have both a small area and a low intensity (panel B). To establish the bounds of the largest, third size class, the first time point where both signal area and intensity were maximum (T36) was considered to represent advanced infections, i.e. late replication and assembly. All signals between those two size classes were considered as size class II, that is replicating infections - for examples, compare T0 with T21 and T36. While at T36 there were almost no class I signals, at T51 they reappeared and were abundant at T66 and T81. Furthermore, the class III signals decreased in abundance at T66 and T81. The re-appearance of class I signals in T51-T81 was assumed to represent new infection events by newly released mature phage particles and thus, a second wave of infection. All other T51-T81 signals were considered old infections from the first wave, in the process of phage maturation and release. Fig. S5. Localization of encapsidated phage and host cell ribosomes in TEM image of phage-infected Pseudoalteromonas cells from T66. Magnification 40 000×, scale bar = 500 nm. Fig. S6. PhageFISH with the negative control gene probe (NonPoly350Pr) on infected cells from T81. The false positive events (white arrows) are all in the smallest signal size class and they amount to a background of ∼ 2% from the cells. No false positives similar to the signals in the higher size class categories or to the cell bursts releasing phage particles are visible. Fig. S7. Reconstruction of the Alexa594 image T21 from Fig. A by using the High Dynamic Range Imaging protocol. A-C. Exposure time series. D. Reconstructed image. Fig. S8. Reconstruction of the Alexa594 image T36 from Fig. A by using the High Dynamic Range Imaging protocol. A-C. Exposure time series. D. Reconstructed image Fig. S9. Reconstruction of the Alexa594 image T51 from Fig. A by using the High Dynamic Range Imaging protocol. A-B. Exposure time series. C. Reconstructed image. Fig. S10. Reconstruction of the Alexa594 image T66 from Fig. B by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Fig. S11. Reconstruction of the Alexa594 image T81 from Fig. B by using the High Dynamic Range Imaging protocol. A-E. Exposure time series. F. Reconstructed image. Fig. S12. Reconstruction of the Alexa594 image T96 from Fig. B by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Fig. S13. Reconstruction of the Alexa594 image T111 from Fig. C by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image. Fig. S14. Reconstruction of the Alexa594 image T126 from Fig. C by using the High Dynamic Range Imaging protocol. A-E. Exposure time series. F. Reconstructed image. Fig. S15. Reconstruction of the Alexa594 image T141 from Fig. C by using the High Dynamic Range Imaging protocol. A-D. Exposure time series. E. Reconstructed image.
Deutsche Forschungsgemeinschaft
ark:/67375/WNG-07K4RS7G-T
ArticleID:EMI12100
Gordon and Betty Moore Foundation
Biosphere2
Max Planck Society
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12100
PMID 23489642
PQID 1416699759
PQPubID 1066360
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3884771
proquest_miscellaneous_1430859565
proquest_miscellaneous_1417534761
proquest_journals_1416699759
pubmed_primary_23489642
pascalfrancis_primary_27627360
wiley_primary_10_1111_1462_2920_12100_EMI12100
istex_primary_ark_67375_WNG_07K4RS7G_T
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Blackwell
Wiley Subscription Services, Inc
John Wiley & Sons Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
– name: John Wiley & Sons Ltd
References Sullivan, M.B., Huang, K.H., Ignacio-Espinoza, J.C., Berlin, A.M., Kelly, L., Weigele, P.R., et al. (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12: 3035-3056.
Wichels, A., Biel, S.S., Gelderblom, H.R., Brinkhoff, T., Muyzer, G., and Schuett, C. (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64: 4128-4133.
Comeau, A.M., and Suttle, C.A. (2007) Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia. Environ Microbiol 9: 1790-1800.
Moraru, C., Lam, P., Fuchs, B.M., Kuypers, M.M.M., and Amann, R. (2010) GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12: 3057-3073.
Clokie, M.R.J., Shan, J., Bailey, S., Jia, Y., and Krisch, H.M. (2006) Transcription of a 'photosynthetic' T4-type phage during infection of a marine cyanobacterium. Environ Microbiol 8: 827-835.
Hurwitz, B.L., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol. doi 10.1111/j.1462-2920.2012.02836.x. (in press)
Proctor, L.M., Okubo, A., and Fuhrman, J.A. (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25: 161-182.
Proctor, L.M., and Fuhrman, J.A. (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60-62.
Lindell, D., Sullivan, M.B., Johnson, Z.I., Tolonen, A.C., Rohwer, F., and Chisholm, S.W. (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101: 11013-11018.
Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169.
Jiang, S.C., Kellogg, C.A., and Paul, J.H. (1998) Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64: 535-542.
Hellweger, F.L. (2009) Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ Microbiol 11: 1386-1394.
Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541-548.
Mann, N.H., Cook, A., Millard, A., Bailey, S., and Clokie, M. (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424: 741-741.
Bragg, J.G., and Chisholm, S.W. (2008) Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS ONE 3: e3550.
Breitbart, M., Thompson, L.R., Suttle, C.S., and Sullivan, M.B. (2007) Exploring the vast diversity of marine viruses. Oceanography 20: 353-362.
Kristensen, D.M., Waller, A.S., Yamada, T., Bork, P., Mushegian, A.R., and Koonin, E.V. (2012) Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J Bacteriol. doi: 10.1128/jb.01801-12 (in press)
Zhang, Y., and Jiao, N. (2009) Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol 75: 1745-1749.
Steward, G.F., Smith, D.C., and Azam, F. (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131: 287-300.
Deng, L., Gregory, A., Yilmaz, S., Poulos, B.T., Hugenholtz, P., and Sullivan, M.B. (2012) Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. mBio 3: e00373-12.
Adams, M.K. (1959) Bacteriophages. New York, USA: Interscience Publ.
Wilhelm, S.W., Weinbauer, M.G., Suttle, C.A., and Jeffrey, W.H. (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43: 586-592.
Moraru, C., and Amann, R. (2012) Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 35: 549-552.
Moraru, C., Moraru, G., Fuchs, B.M., and Amann, R. (2011) Concepts and software for a rational design of polynucleotide probes. Environ Microbiol Rep 3: 69-78.
Marston, M.F., and Sallee, J.L. (2003) Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 69: 4639-4647.
Wichels, A., Gerdts, G., and Schuett, C. (2002) Pseudoalteromonas spp. phages, a significant group of marine bacteriophages in the North Sea. Aquat Microb Ecol 27: 233-239.
Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101.
Kenzaka, T., Tani, K., and Nasu, M. (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4: 648-659.
Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2: 106-110.
Tadmor, A.D., Ottesen, E.A., Leadbetter, J.R., and Phillips, R. (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333: 58-62.
Brum, J.R., Steward, G.F., Jiang, S.C., and Jellison, R. (2005) Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Microb Ecol 41: 247-260.
Raytcheva, D.A., Haase-Pettingell, C., Piret, J.M., and King, J.A. (2011) Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol 85: 2406-2415.
Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., et al. (2006) Climate-driven trends in contemporary ocean productivity. Nature 444: 752-755.
Holmström, C., and Kjelleberg, S. (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285-293.
Sullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., and Chisholm, S.W. (2006) Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4: 1334-1357.
Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476: 176-180.
Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039.
Allen, L.Z., Ishoey, T., Novotny, M.A., McLean, J.S., Lasken, R.S., and Williamson, S.J. (2011) Single virus genomics: a new tool for virus discovery. PLoS ONE 6: e17722.
Paul, J.H. (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2: 579-589.
Suttle, C.A., and Chan, A.M. (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92: 99-109.
Borsheim, K.Y. (1993) Native marine bacteriophages. FEMS Microbiol Lett 102: 141-159.
Yoon, H.S., Price, D.C., Stepanauskas, R., Rajah, V.D., Sieracki, M.E., Wilson, W.H., et al. (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714-717.
Hoshino, T., and Schramm, A. (2010) Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12: 2508-2517.
Bakshi, S., Siryaporn, A., Goulian, M., and Weisshaar, J.C. (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85: 21-38.
Bobrow, M.N., Litt, G.L., Shaughnessy, K.J., Mayer, P.C., and Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150: 145-149.
Weinbauer, M.G., and Höfle, M.G. (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64: 431-438.
Sharon, I., Tzahor, S., Williamson, S., Shmoish, M., Man-Aharonovich, D., Rusch, D.B., et al. (2007) Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1: 492-501.
Fuhrman, J.A., and Noble, R.T. (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236-1242.
Suttle, C.A. (2007) Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 5: 801-812.
Zeng, L., Skinner, S.O., Zong, C., Sippy, J., Feiss, M., and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141: 682-691.
Holmfeldt, K., Middelboe, M., Nybroe, O., and Riemann, L. (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73: 6730-6739.
Sullivan, M.B., Waterbury, J.B., and Chisholm, S.W. (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047-1051.
Duhaime, M.B., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14: 2526-2537.
Lindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M., and Chisholm, S.W. (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86-89.
Ellis, E.L., and Delbrueck, M. (1939) The growth of bacteriophage. J Gen Physiol 22: 365-384.
Lu, J., Chen, F., and Hodson, R.E. (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in ri
2010; 12
1993; 25
2011; 476
1990; 56
2004; 28
2010; 141
2008; 3
2007; 73
2012; 14
1990; 343
2008; 2
1998; 43
2009; 11
1992; 150
2010; 25
2007; 9
2007; 5
1996; 131
2007; 20
2010; 190
2007; 1
2010; 4
1994; 108
2006; 444
2004; 101
2011; 333
2007; 449
2012
1995; 59
2005; 41
2006; 8
2005; 438
2006; 4
1993; 102
2008; 320
2001; 67
2012; 35
2011; 3
2011; 6
1959
1998; 64
1996; 10
2011; 332
2011; 7
1993; 59
2002; 27
1995; 40
2012; 2
2012; 3
2003; 424
2009; 75
1993; 92
2002; 68
1939; 22
2003; 69
2011; 85
1999; 399
1999; 30
2013
2012; 6
2012; 434
2012; 88
2012; 85
16802857 - PLoS Biol. 2006 Jul;4(8):e234
20478257 - Cell. 2010 May 14;141(4):682-91
18958282 - PLoS One. 2008;3(10):e3550
19873108 - J Gen Physiol. 1939 Jan 20;22(3):365-84
22713159 - Environ Microbiol. 2012 Sep;14(9):2526-37
18043651 - ISME J. 2007 Oct;1(6):492-501
17766444 - Appl Environ Microbiol. 2007 Nov;73(21):6730-9
21769089 - Nat Chem Biol. 2011 Aug;7(8):484-7
20406291 - Environ Microbiol. 2010 Sep;12(9):2508-17
23761233 - Environ Microbiol Rep. 2011 Feb;3(1):69-78
23084423 - Virology. 2012 Dec 20;434(2):181-6
9464390 - Appl Environ Microbiol. 1998 Feb;64(2):535-42
22845467 - Environ Microbiol. 2013 May;15(5):1428-40
20090786 - ISME J. 2010 May;4(5):648-59
16349497 - Appl Environ Microbiol. 1998 Feb;64(2):431-8
16222247 - Nature. 2005 Nov 3;438(7064):86-9
18497287 - Science. 2008 May 23;320(5879):1034-9
10568837 - FEMS Microbiol Ecol. 1999 Dec 1;30(4):285-293
1613251 - J Immunol Methods. 1992 Jun 24;150(1-2):145-9
12902252 - Appl Environ Microbiol. 2003 Aug;69(8):4639-47
7535888 - Microbiol Rev. 1995 Mar;59(1):143-69
19175665 - Environ Microbiol. 2009 Jun;11(6):1386-94
22624875 - Mol Microbiol. 2012 Jul;85(1):21-38
12944965 - Nature. 2003 Aug 28;424(6952):1047-51
23320838 - Environ Microbiol. 2013 May;15(5):1356-76
2200342 - Appl Environ Microbiol. 1990 Jun;56(6):1919-25
11425754 - Appl Environ Microbiol. 2001 Jul;67(7):3285-90
12039771 - Appl Environ Microbiol. 2002 Jun;68(6):3094-101
21551060 - Science. 2011 May 6;332(6030):714-7
10376593 - Nature. 1999 Jun 10;399(6736):541-8
22739490 - ISME J. 2012 Dec;6(12):2178-87
21576847 - Microbes Environ. 2010;25(1):15-21
22134648 - ISME J. 2012 May;6(5):951-60
23222723 - J Bacteriol. 2013 Mar;195(5):941-50
18521076 - ISME J. 2008 Jun;2(6):579-89
21436882 - PLoS One. 2011;6(3):e17722
15109783 - FEMS Microbiol Rev. 2004 May;28(2):127-81
16349072 - Appl Environ Microbiol. 1993 Oct;59(10):3393-9
23140662 - Syst Appl Microbiol. 2012 Dec;35(8):549-52
16623740 - Environ Microbiol. 2006 May;8(5):827-35
9797256 - Appl Environ Microbiol. 1998 Nov;64(11):4128-33
21833083 - Nature. 2011 Aug 11;476(7359):176-80
21177804 - J Virol. 2011 Mar;85(5):2406-15
22172287 - J Microbiol Methods. 2012 Feb;88(2):218-23
17805294 - Nature. 2007 Sep 6;449(7158):83-6
15263091 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11007-12
17853907 - Nat Rev Microbiol. 2007 Oct;5(10):801-12
21719670 - Science. 2011 Jul 1;333(6038):58-62
24189813 - Microb Ecol. 1993 Mar;25(2):161-82
20629705 - Environ Microbiol. 2010 Nov;12(11):3057-73
12917674 - Nature. 2003 Aug 14;424(6950):741
20643879 - J Cell Biol. 2010 Jul 26;190(2):165-75
15256601 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11013-8
17151666 - Nature. 2006 Dec 7;444(7120):752-5
17564612 - Environ Microbiol. 2007 Jul;9(7):1790-800
23111870 - MBio. 2012;3(6). pii: e00373-12. doi: 10.1128/mBio.00373-12
19139231 - Appl Environ Microbiol. 2009 Mar;75(6):1745-9
20662890 - Environ Microbiol. 2010 Nov;12(11):3035-56
References_xml – reference: Waterbury, J.B., and Valois, F.W. (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater. Appl Environ Microbiol 59: 3393-3399.
– reference: Amann, R.I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143-169.
– reference: Weinbauer, M.G. (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28: 127-181.
– reference: Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008) The microbial engines that drive Earth's biogeochemical cycles. Science 320: 1034-1039.
– reference: Lindell, D., Jaffe, J.D., Johnson, Z.I., Church, G.M., and Chisholm, S.W. (2005) Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86-89.
– reference: Bernhard, J.M., Edgcomb, V.P., Casciotti, K.L., McIlvin, M.R., and Beaudoin, D.J. (2012) Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. ISME J 6: 951-960.
– reference: Bragg, J.G., and Chisholm, S.W. (2008) Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS ONE 3: e3550.
– reference: Breitbart, M., Thompson, L.R., Suttle, C.S., and Sullivan, M.B. (2007) Exploring the vast diversity of marine viruses. Oceanography 20: 353-362.
– reference: Wichels, A., Biel, S.S., Gelderblom, H.R., Brinkhoff, T., Muyzer, G., and Schuett, C. (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64: 4128-4133.
– reference: Comeau, A.M., and Suttle, C.A. (2007) Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia. Environ Microbiol 9: 1790-1800.
– reference: Duhaime, M.B., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol 14: 2526-2537.
– reference: Fuhrman, J.A., and Noble, R.T. (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40: 1236-1242.
– reference: Holmström, C., and Kjelleberg, S. (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285-293.
– reference: Suttle, C.A. (2007) Marine viruses - major players in the global ecosystem. Nat Rev Microbiol 5: 801-812.
– reference: Kenzaka, T., Tani, K., and Nasu, M. (2010) High-frequency phage-mediated gene transfer in freshwater environments determined at single-cell level. ISME J 4: 648-659.
– reference: Mann, N.H., Cook, A., Millard, A., Bailey, S., and Clokie, M. (2003) Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424: 741-741.
– reference: Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101.
– reference: Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. (2012) Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change 2: 106-110.
– reference: Bobrow, M.N., Litt, G.L., Shaughnessy, K.J., Mayer, P.C., and Conlon, J. (1992) The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats. J Immunol Methods 150: 145-149.
– reference: Jiang, S.C., Kellogg, C.A., and Paul, J.H. (1998) Characterization of marine temperate phage-host systems isolated from Mamala Bay, Oahu, Hawaii. Appl Environ Microbiol 64: 535-542.
– reference: Millard, A., Clokie, M.R., Shub, D.A., and Mann, N.H. (2004) Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA 101: 11007-11012.
– reference: Moraru, C., Lam, P., Fuchs, B.M., Kuypers, M.M.M., and Amann, R. (2010) GeneFISH - an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environ Microbiol 12: 3057-3073.
– reference: Wichels, A., Gerdts, G., and Schuett, C. (2002) Pseudoalteromonas spp. phages, a significant group of marine bacteriophages in the North Sea. Aquat Microb Ecol 27: 233-239.
– reference: Adams, M.K. (1959) Bacteriophages. New York, USA: Interscience Publ.
– reference: Kawakami, S., Hasegawa, T., Imachi, H., Yamaguchi, T., Harada, H., Ohashi, A., and Kubota, K. (2012) Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes. J Microbiol Methods 88: 218-223.
– reference: Allen, L.Z., Ishoey, T., Novotny, M.A., McLean, J.S., Lasken, R.S., and Williamson, S.J. (2011) Single virus genomics: a new tool for virus discovery. PLoS ONE 6: e17722.
– reference: Sullivan, M.B., Huang, K.H., Ignacio-Espinoza, J.C., Berlin, A.M., Kelly, L., Weigele, P.R., et al. (2010) Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12: 3035-3056.
– reference: Labrie, S.J., Frois-Moniz, K., Osburne, M.S., Kelly, L., Roggensack, S.E., Sullivan, M.B., et al. (2013) Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. doi: 10.1111/1462-2920.12053 (in press)
– reference: Lindell, D., Sullivan, M.B., Johnson, Z.I., Tolonen, A.C., Rohwer, F., and Chisholm, S.W. (2004) Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA 101: 11013-11018.
– reference: Lu, J., Chen, F., and Hodson, R.E. (2001) Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol 67: 3285-3290.
– reference: Marston, M.F., and Sallee, J.L. (2003) Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island's coastal waters. Appl Environ Microbiol 69: 4639-4647.
– reference: Clokie, M.R.J., Shan, J., Bailey, S., Jia, Y., and Krisch, H.M. (2006) Transcription of a 'photosynthetic' T4-type phage during infection of a marine cyanobacterium. Environ Microbiol 8: 827-835.
– reference: Ellis, E.L., and Delbrueck, M. (1939) The growth of bacteriophage. J Gen Physiol 22: 365-384.
– reference: Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., et al. (2011) Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476: 176-180.
– reference: Moraru, C., and Amann, R. (2012) Crystal ball: fluorescence in situ hybridization in the age of super-resolution microscopy. Syst Appl Microbiol 35: 549-552.
– reference: Kawakami, S., Kubota, K., Imachi, H., Yamaguchi, T., Harada, H., and Ohashi, A. (2010) Detection of single copy genes by two-pass tyramide signal amplification Fluorescence in situ hybridization (Two-Pass TSA-FISH) with single oligonucleotide probes. Microbes Environ 25: 15-21.
– reference: Proctor, L.M., and Fuhrman, J.A. (1990) Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60-62.
– reference: Hoshino, T., and Schramm, A. (2010) Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environ Microbiol 12: 2508-2517.
– reference: Zeng, L., Skinner, S.O., Zong, C., Sippy, J., Feiss, M., and Golding, I. (2010) Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141: 682-691.
– reference: Lindell, D., Jaffe, J.D., Coleman, M.L., Futschik, M.E., Axmann, I.M., Rector, T., et al. (2007) Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449: 83-86.
– reference: Raytcheva, D.A., Haase-Pettingell, C., Piret, J.M., and King, J.A. (2011) Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol 85: 2406-2415.
– reference: Ptashne, M. (2011) Principles of a switch. Nat Chem Biol 7: 484-487.
– reference: Lenk, S., Moraru, C., Hahnke, S., Arnds, J., Richter, M., Kube, M., et al. (2012) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 6: 2178-2187.
– reference: Hurwitz, B.L., Deng, L., Poulos, B.T., and Sullivan, M.B. (2012) Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics. Environ Microbiol. doi 10.1111/j.1462-2920.2012.02836.x. (in press)
– reference: Paul, J.H. (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2: 579-589.
– reference: Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J.L., Feldman, G.C., et al. (2006) Climate-driven trends in contemporary ocean productivity. Nature 444: 752-755.
– reference: Sharon, I., Tzahor, S., Williamson, S., Shmoish, M., Man-Aharonovich, D., Rusch, D.B., et al. (2007) Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J 1: 492-501.
– reference: Hellweger, F.L. (2009) Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ Microbiol 11: 1386-1394.
– reference: Bakshi, S., Siryaporn, A., Goulian, M., and Weisshaar, J.C. (2012) Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol Microbiol 85: 21-38.
– reference: Weinbauer, M.G., and Peduzzi, P. (1994) Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes. Mar Ecol Prog Ser 108: 11-20.
– reference: Wang, I.-N., Dykhuizen, D.E., and Slobodkin, L.B. (1996) The evolution of phage lysis timing. Evol Ecol 10: 545-558.
– reference: Suttle, C.A., and Chan, A.M. (1993) Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92: 99-109.
– reference: Yoon, H.S., Price, D.C., Stepanauskas, R., Rajah, V.D., Sieracki, M.E., Wilson, W.H., et al. (2011) Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714-717.
– reference: Deng, L., Gregory, A., Yilmaz, S., Poulos, B.T., Hugenholtz, P., and Sullivan, M.B. (2012) Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. mBio 3: e00373-12.
– reference: Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541-548.
– reference: Zhang, Y., and Jiao, N. (2009) Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium Roseobacter denitrificans OCh114. Appl Environ Microbiol 75: 1745-1749.
– reference: Schermelleh, L., Heintzmann, R., and Leonhardt, H. (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190: 165-175.
– reference: Weinbauer, M.G., and Höfle, M.G. (1998) Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol 64: 431-438.
– reference: Wilhelm, S.W., Weinbauer, M.G., Suttle, C.A., and Jeffrey, W.H. (1998) The role of sunlight in the removal and repair of viruses in the sea. Limnol Oceanogr 43: 586-592.
– reference: Sullivan, M.B., Waterbury, J.B., and Chisholm, S.W. (2003) Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047-1051.
– reference: Holmfeldt, K., Middelboe, M., Nybroe, O., and Riemann, L. (2007) Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their Flavobacterium hosts. Appl Environ Microbiol 73: 6730-6739.
– reference: Brum, J.R., Steward, G.F., Jiang, S.C., and Jellison, R. (2005) Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Microb Ecol 41: 247-260.
– reference: Moraru, C., Moraru, G., Fuchs, B.M., and Amann, R. (2011) Concepts and software for a rational design of polynucleotide probes. Environ Microbiol Rep 3: 69-78.
– reference: Duhaime, M.B., and Sullivan, M.B. (2012) Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology 434: 181-186.
– reference: Sullivan, M.B., Lindell, D., Lee, J.A., Thompson, L.R., Bielawski, J.P., and Chisholm, S.W. (2006) Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4: 1334-1357.
– reference: Kristensen, D.M., Waller, A.S., Yamada, T., Bork, P., Mushegian, A.R., and Koonin, E.V. (2012) Orthologous gene clusters and taxon signature genes for viruses of prokaryotes. J Bacteriol. doi: 10.1128/jb.01801-12 (in press)
– reference: Steward, G.F., Smith, D.C., and Azam, F. (1996) Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar Ecol Prog Ser 131: 287-300.
– reference: Tadmor, A.D., Ottesen, E.A., Leadbetter, J.R., and Phillips, R. (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333: 58-62.
– reference: Proctor, L.M., Okubo, A., and Fuhrman, J.A. (1993) Calibrating estimates of phage-induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb Ecol 25: 161-182.
– reference: Amann, R., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R., and Stahl, D.A. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56: 1919-1925.
– reference: Borsheim, K.Y. (1993) Native marine bacteriophages. FEMS Microbiol Lett 102: 141-159.
– volume: 85
  start-page: 2406
  year: 2011
  end-page: 2415
  article-title: Intracellular assembly of cyanophage Syn5 proceeds through a scaffold‐containing procapsid
  publication-title: J Virol
– volume: 332
  start-page: 714
  year: 2011
  end-page: 717
  article-title: Single‐cell genomics reveals organismal interactions in uncultivated marine protists
  publication-title: Science
– volume: 22
  start-page: 365
  year: 1939
  end-page: 384
  article-title: The growth of bacteriophage
  publication-title: J Gen Physiol
– volume: 12
  start-page: 3035
  year: 2010
  end-page: 3056
  article-title: Genomic analysis of oceanic cyanobacterial myoviruses compared with T4‐like myoviruses from diverse hosts and environments
  publication-title: Environ Microbiol
– volume: 28
  start-page: 127
  year: 2004
  end-page: 181
  article-title: Ecology of prokaryotic viruses
  publication-title: FEMS Microbiol Rev
– volume: 3
  start-page: e3550
  year: 2008
  article-title: Modeling the fitness consequences of a cyanophage‐encoded photosynthesis gene
  publication-title: PLoS ONE
– volume: 333
  start-page: 58
  year: 2011
  end-page: 62
  article-title: Probing individual environmental bacteria for viruses by using microfluidic digital PCR
  publication-title: Science
– volume: 40
  start-page: 1236
  year: 1995
  end-page: 1242
  article-title: Viruses and protists cause similar bacterial mortality in coastal seawater
  publication-title: Limnol Oceanogr
– volume: 67
  start-page: 3285
  year: 2001
  end-page: 3290
  article-title: Distribution, isolation, host specificity, and diversity of cyanophages infecting marine spp. in river estuaries
  publication-title: Appl Environ Microbiol
– volume: 30
  start-page: 285
  year: 1999
  end-page: 293
  article-title: Marine species are associated with higher organisms and produce biologically active extracellular agents
  publication-title: FEMS Microbiol Ecol
– volume: 2
  start-page: 579
  year: 2008
  end-page: 589
  article-title: Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas?
  publication-title: ISME J
– volume: 3
  start-page: e00373‐12
  year: 2012
  article-title: Contrasting life strategies of viruses that infect photo‐ and heterotrophic bacteria, as revealed by viral tagging
  publication-title: mBio
– volume: 101
  start-page: 11013
  year: 2004
  end-page: 11018
  article-title: Transfer of photosynthesis genes to and from viruses
  publication-title: Proc Natl Acad Sci USA
– volume: 69
  start-page: 4639
  year: 2003
  end-page: 4647
  article-title: Genetic diversity and temporal variation in the cyanophage community infecting marine species in Rhode Island's coastal waters
  publication-title: Appl Environ Microbiol
– volume: 41
  start-page: 247
  year: 2005
  end-page: 260
  article-title: Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake
  publication-title: Aquat Microb Ecol
– volume: 424
  start-page: 1047
  year: 2003
  end-page: 1051
  article-title: Cyanophages infecting the oceanic cyanobacterium
  publication-title: Nature
– volume: 73
  start-page: 6730
  year: 2007
  end-page: 6739
  article-title: Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their hosts
  publication-title: Appl Environ Microbiol
– volume: 434
  start-page: 181
  year: 2012
  end-page: 186
  article-title: Ocean viruses: rigorously evaluating the metagenomic sample‐to‐sequence pipeline
  publication-title: Virology
– volume: 88
  start-page: 218
  year: 2012
  end-page: 223
  article-title: Detection of single‐copy functional genes in prokaryotic cells by two‐pass TSA‐FISH with polynucleotide probes
  publication-title: J Microbiol Methods
– year: 1959
– volume: 59
  start-page: 3393
  year: 1993
  end-page: 3399
  article-title: Resistance to co‐occurring phages enables marine communities to coexist with cyanophage abundant in seawater
  publication-title: Appl Environ Microbiol
– volume: 444
  start-page: 752
  year: 2006
  end-page: 755
  article-title: Climate‐driven trends in contemporary ocean productivity
  publication-title: Nature
– volume: 6
  start-page: 951
  year: 2012
  end-page: 960
  article-title: Denitrification likely catalyzed by endobionts in an allogromiid foraminifer
  publication-title: ISME J
– year: 2012
  article-title: Orthologous gene clusters and taxon signature genes for viruses of prokaryotes
  publication-title: J Bacteriol
– volume: 6
  start-page: 2178
  year: 2012
  end-page: 2187
  article-title: Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes
  publication-title: ISME J
– volume: 2
  start-page: 106
  year: 2012
  end-page: 110
  article-title: Microbial mediation of carbon‐cycle feedbacks to climate warming
  publication-title: Nat Clim Change
– volume: 131
  start-page: 287
  year: 1996
  end-page: 300
  article-title: Abundance and production of bacteria and viruses in the Bering and Chukchi Seas
  publication-title: Mar Ecol Prog Ser
– volume: 476
  start-page: 176
  year: 2011
  end-page: 180
  article-title: Hydrogen is an energy source for hydrothermal vent symbioses
  publication-title: Nature
– volume: 343
  start-page: 60
  year: 1990
  end-page: 62
  article-title: Viral mortality of marine bacteria and cyanobacteria
  publication-title: Nature
– volume: 56
  start-page: 1919
  year: 1990
  end-page: 1925
  article-title: Combination of 16S rRNA‐targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations
  publication-title: Appl Environ Microbiol
– volume: 3
  start-page: 69
  year: 2011
  end-page: 78
  article-title: Concepts and software for a rational design of polynucleotide probes
  publication-title: Environ Microbiol Rep
– volume: 150
  start-page: 145
  year: 1992
  end-page: 149
  article-title: The use of catalyzed reporter deposition as a means of signal amplification in a variety of formats
  publication-title: J Immunol Methods
– volume: 438
  start-page: 86
  year: 2005
  end-page: 89
  article-title: Photosynthesis genes in marine viruses yield proteins during host infection
  publication-title: Nature
– volume: 102
  start-page: 141
  year: 1993
  end-page: 159
  article-title: Native marine bacteriophages
  publication-title: FEMS Microbiol Lett
– volume: 399
  start-page: 541
  year: 1999
  end-page: 548
  article-title: Marine viruses and their biogeochemical and ecological effects
  publication-title: Nature
– volume: 9
  start-page: 1790
  year: 2007
  end-page: 1800
  article-title: Distribution, genetic richness and phage sensitivity of spp. from coastal British Columbia
  publication-title: Environ Microbiol
– volume: 424
  start-page: 741
  year: 2003
  end-page: 741
  article-title: Marine ecosystems: bacterial photosynthesis genes in a virus
  publication-title: Nature
– year: 2013
  article-title: Genomes of marine cyanopodoviruses reveal multiple origins of diversity
  publication-title: Environ Microbiol
– volume: 92
  start-page: 99
  year: 1993
  end-page: 109
  article-title: Marine cyanophages infecting oceanic and coastal strains of : abundance, morphology, cross‐infectivity and growth characteristics
  publication-title: Mar Ecol Prog Ser
– volume: 11
  start-page: 1386
  year: 2009
  end-page: 1394
  article-title: Carrying photosynthesis genes increases ecological fitness of cyanophage
  publication-title: Environ Microbiol
– volume: 25
  start-page: 15
  year: 2010
  end-page: 21
  article-title: Detection of single copy genes by two‐pass tyramide signal amplification Fluorescence hybridization (Two‐Pass TSA‐FISH) with single oligonucleotide probes
  publication-title: Microbes Environ
– volume: 64
  start-page: 535
  year: 1998
  end-page: 542
  article-title: Characterization of marine temperate phage‐host systems isolated from Mamala Bay, Oahu, Hawaii
  publication-title: Appl Environ Microbiol
– volume: 5
  start-page: 801
  year: 2007
  end-page: 812
  article-title: Marine viruses – major players in the global ecosystem
  publication-title: Nat Rev Microbiol
– volume: 68
  start-page: 3094
  year: 2002
  end-page: 3101
  article-title: Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria
  publication-title: Appl Environ Microbiol
– volume: 108
  start-page: 11
  year: 1994
  end-page: 20
  article-title: Frequency, size and distribution of bacteriophages in different marine bacterial morphotypes
  publication-title: Mar Ecol Prog Ser
– volume: 20
  start-page: 353
  year: 2007
  end-page: 362
  article-title: Exploring the vast diversity of marine viruses
  publication-title: Oceanography
– volume: 12
  start-page: 2508
  year: 2010
  end-page: 2517
  article-title: Detection of denitrification genes by rolling circle amplification‐fluorescence hybridization to link metabolic potential with identity inside bacterial cells
  publication-title: Environ Microbiol
– volume: 35
  start-page: 549
  year: 2012
  end-page: 552
  article-title: Crystal ball: fluorescence hybridization in the age of super‐resolution microscopy
  publication-title: Syst Appl Microbiol
– volume: 320
  start-page: 1034
  year: 2008
  end-page: 1039
  article-title: The microbial engines that drive Earth's biogeochemical cycles
  publication-title: Science
– volume: 64
  start-page: 4128
  year: 1998
  end-page: 4133
  article-title: Bacteriophage diversity in the North Sea
  publication-title: Appl Environ Microbiol
– year: 2012
  article-title: Evaluation of methods to concentrate and purify ocean virus communities through comparative, replicated metagenomics
  publication-title: Environ Microbiol
– volume: 27
  start-page: 233
  year: 2002
  end-page: 239
  article-title: spp. phages, a significant group of marine bacteriophages in the North Sea
  publication-title: Aquat Microb Ecol
– volume: 85
  start-page: 21
  year: 2012
  end-page: 38
  article-title: Superresolution imaging of ribosomes and RNA polymerase in live cells
  publication-title: Mol Microbiol
– volume: 4
  start-page: 648
  year: 2010
  end-page: 659
  article-title: High‐frequency phage‐mediated gene transfer in freshwater environments determined at single‐cell level
  publication-title: ISME J
– volume: 449
  start-page: 83
  year: 2007
  end-page: 86
  article-title: Genome‐wide expression dynamics of a marine virus and host reveal features of co‐evolution
  publication-title: Nature
– volume: 6
  start-page: e17722
  year: 2011
  article-title: Single virus genomics: a new tool for virus discovery
  publication-title: PLoS ONE
– volume: 75
  start-page: 1745
  year: 2009
  end-page: 1749
  article-title: Roseophage RDJLΦ1, infecting the aerobic anoxygenic phototrophic bacterium OCh114
  publication-title: Appl Environ Microbiol
– volume: 4
  start-page: 1334
  year: 2006
  end-page: 1357
  article-title: Prevalence and evolution of core Photosystem II genes in marine cyanobacterial viruses and their hosts
  publication-title: PLoS Biol
– volume: 64
  start-page: 431
  year: 1998
  end-page: 438
  article-title: Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake
  publication-title: Appl Environ Microbiol
– volume: 101
  start-page: 11007
  year: 2004
  end-page: 11012
  article-title: Genetic organization of the region in phages infecting marine strains
  publication-title: Proc Natl Acad Sci USA
– volume: 1
  start-page: 492
  year: 2007
  end-page: 501
  article-title: Viral photosynthetic reaction center genes and transcripts in the marine environment
  publication-title: ISME J
– volume: 59
  start-page: 143
  year: 1995
  end-page: 169
  article-title: Phylogenetic identification and detection of individual microbial cells without cultivation
  publication-title: Microbiol Rev
– volume: 43
  start-page: 586
  year: 1998
  end-page: 592
  article-title: The role of sunlight in the removal and repair of viruses in the sea
  publication-title: Limnol Oceanogr
– volume: 10
  start-page: 545
  year: 1996
  end-page: 558
  article-title: The evolution of phage lysis timing
  publication-title: Evol Ecol
– volume: 141
  start-page: 682
  year: 2010
  end-page: 691
  article-title: Decision making at a subcellular level determines the outcome of bacteriophage infection
  publication-title: Cell
– volume: 8
  start-page: 827
  year: 2006
  end-page: 835
  article-title: Transcription of a ‘photosynthetic’ T4‐type phage during infection of a marine cyanobacterium
  publication-title: Environ Microbiol
– volume: 25
  start-page: 161
  year: 1993
  end-page: 182
  article-title: Calibrating estimates of phage‐induced mortality in marine bacteria: ultrastructural studies of marine bacteriophage development from one‐step growth experiments
  publication-title: Microb Ecol
– volume: 12
  start-page: 3057
  year: 2010
  end-page: 3073
  article-title: GeneFISH – an technique for linking gene presence and cell identity in environmental microorganisms
  publication-title: Environ Microbiol
– volume: 14
  start-page: 2526
  year: 2012
  end-page: 2537
  article-title: Towards quantitative metagenomics of wild viruses and other ultra‐low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method
  publication-title: Environ Microbiol
– volume: 190
  start-page: 165
  year: 2010
  end-page: 175
  article-title: A guide to super‐resolution fluorescence microscopy
  publication-title: J Cell Biol
– volume: 7
  start-page: 484
  year: 2011
  end-page: 487
  article-title: Principles of a switch
  publication-title: Nat Chem Biol
– reference: 18043651 - ISME J. 2007 Oct;1(6):492-501
– reference: 20478257 - Cell. 2010 May 14;141(4):682-91
– reference: 17805294 - Nature. 2007 Sep 6;449(7158):83-6
– reference: 23222723 - J Bacteriol. 2013 Mar;195(5):941-50
– reference: 21833083 - Nature. 2011 Aug 11;476(7359):176-80
– reference: 16349072 - Appl Environ Microbiol. 1993 Oct;59(10):3393-9
– reference: 22172287 - J Microbiol Methods. 2012 Feb;88(2):218-23
– reference: 20662890 - Environ Microbiol. 2010 Nov;12(11):3035-56
– reference: 16222247 - Nature. 2005 Nov 3;438(7064):86-9
– reference: 16623740 - Environ Microbiol. 2006 May;8(5):827-35
– reference: 23140662 - Syst Appl Microbiol. 2012 Dec;35(8):549-52
– reference: 23111870 - MBio. 2012;3(6). pii: e00373-12. doi: 10.1128/mBio.00373-12
– reference: 19139231 - Appl Environ Microbiol. 2009 Mar;75(6):1745-9
– reference: 18958282 - PLoS One. 2008;3(10):e3550
– reference: 21719670 - Science. 2011 Jul 1;333(6038):58-62
– reference: 20406291 - Environ Microbiol. 2010 Sep;12(9):2508-17
– reference: 18497287 - Science. 2008 May 23;320(5879):1034-9
– reference: 24189813 - Microb Ecol. 1993 Mar;25(2):161-82
– reference: 20090786 - ISME J. 2010 May;4(5):648-59
– reference: 22739490 - ISME J. 2012 Dec;6(12):2178-87
– reference: 10568837 - FEMS Microbiol Ecol. 1999 Dec 1;30(4):285-293
– reference: 12944965 - Nature. 2003 Aug 28;424(6952):1047-51
– reference: 21551060 - Science. 2011 May 6;332(6030):714-7
– reference: 23320838 - Environ Microbiol. 2013 May;15(5):1356-76
– reference: 9797256 - Appl Environ Microbiol. 1998 Nov;64(11):4128-33
– reference: 20643879 - J Cell Biol. 2010 Jul 26;190(2):165-75
– reference: 12902252 - Appl Environ Microbiol. 2003 Aug;69(8):4639-47
– reference: 12039771 - Appl Environ Microbiol. 2002 Jun;68(6):3094-101
– reference: 16802857 - PLoS Biol. 2006 Jul;4(8):e234
– reference: 2200342 - Appl Environ Microbiol. 1990 Jun;56(6):1919-25
– reference: 23761233 - Environ Microbiol Rep. 2011 Feb;3(1):69-78
– reference: 18521076 - ISME J. 2008 Jun;2(6):579-89
– reference: 9464390 - Appl Environ Microbiol. 1998 Feb;64(2):535-42
– reference: 23084423 - Virology. 2012 Dec 20;434(2):181-6
– reference: 21576847 - Microbes Environ. 2010;25(1):15-21
– reference: 1613251 - J Immunol Methods. 1992 Jun 24;150(1-2):145-9
– reference: 21769089 - Nat Chem Biol. 2011 Aug;7(8):484-7
– reference: 22624875 - Mol Microbiol. 2012 Jul;85(1):21-38
– reference: 17853907 - Nat Rev Microbiol. 2007 Oct;5(10):801-12
– reference: 10376593 - Nature. 1999 Jun 10;399(6736):541-8
– reference: 22845467 - Environ Microbiol. 2013 May;15(5):1428-40
– reference: 19873108 - J Gen Physiol. 1939 Jan 20;22(3):365-84
– reference: 12917674 - Nature. 2003 Aug 14;424(6950):741
– reference: 17564612 - Environ Microbiol. 2007 Jul;9(7):1790-800
– reference: 11425754 - Appl Environ Microbiol. 2001 Jul;67(7):3285-90
– reference: 21436882 - PLoS One. 2011;6(3):e17722
– reference: 22134648 - ISME J. 2012 May;6(5):951-60
– reference: 22713159 - Environ Microbiol. 2012 Sep;14(9):2526-37
– reference: 7535888 - Microbiol Rev. 1995 Mar;59(1):143-69
– reference: 17151666 - Nature. 2006 Dec 7;444(7120):752-5
– reference: 20629705 - Environ Microbiol. 2010 Nov;12(11):3057-73
– reference: 21177804 - J Virol. 2011 Mar;85(5):2406-15
– reference: 15263091 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11007-12
– reference: 17766444 - Appl Environ Microbiol. 2007 Nov;73(21):6730-9
– reference: 15256601 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11013-8
– reference: 15109783 - FEMS Microbiol Rev. 2004 May;28(2):127-81
– reference: 16349497 - Appl Environ Microbiol. 1998 Feb;64(2):431-8
– reference: 19175665 - Environ Microbiol. 2009 Jun;11(6):1386-94
SSID ssj0017370
Score 2.4395998
Snippet Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire,...
Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire, and...
Summary Microbes drive the biogeochemical cycles that fuel planet Earth, and their viruses (phages) alter microbial population structure, genome repertoire,...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2306
SubjectTerms Animal, plant and microbial ecology
Bacteriology
Bacteriophages - genetics
Biogeochemical cycles
Biological and medical sciences
Deoxyribonucleic acid
DNA
Environmental surveys
Fundamental and applied biological sciences. Psychology
General aspects
Host-Pathogen Interactions
Intracellular Space - virology
Microbial ecology
Microbiology
Podoviridae - physiology
Population
Population ecology
Population structure
Pseudoalteromonas - virology
Replicative cycle, interference, host-virus relations, pathogenicity, miscellaneous strains
Reproducibility of Results
Seawater - microbiology
Seawater - virology
Viral infections
Virology
Virology - methods
Title Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses
URI https://api.istex.fr/ark:/67375/WNG-07K4RS7G-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12100
https://www.ncbi.nlm.nih.gov/pubmed/23489642
https://www.proquest.com/docview/1416699759
https://www.proquest.com/docview/1417534761
https://www.proquest.com/docview/1430859565
https://pubmed.ncbi.nlm.nih.gov/PMC3884771
Volume 15
WOSCitedRecordID wos000322625500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yq-DFb9fqOkQQTxaajzbJUdTZFZdh2dnVuZW0SdnBoTNMZ8T15M2rf6N_ie-lnbqjIgheSqF5SZO8l7zX_vJ-hDxNKpZYG_hdrI1lydPYauPiKvOyEOBvFAFt8e5IjUZ6MjHHHZoQz8K0-SH6D25oGWG9RgO3RXPJyMHEeYxcS5ggIYGofZcxoZG9gcvj_keCEoEvrivMeJfdB8E8v1QA3ikO7CdER9oGBqhqmS3-5Hr-jqC87NmGrWl48z906ha50fml9EWrSLfJFV_fIddapsqLu-TrGLa4mf_-5Rt-6ae2dnTRU3_RGSKPKMKFZ3SD7qqpa8nuG4pZomAfcrS4oItzWMCGb8aHz6mlLX01Xc1BtsHTnZ89yENXsRHEx4aGqqX3WPm68c09cjZ8ffryMO44HOIpeJpJrLyWxqXSJ7DqwuRLPJPiGDM61VUgFS-4yzR34MaootDWlpnjUjNrSi1cKu6TnXpe-weEuipLKmeYLz3m1NGWc1emWpTCyUppFpFnYQLzRZunI7fLDwhbU2n-fnSQJ-qtPBmrg_w0IoOtGe4FOLyjElkSkf3NlOedSTcQI7EsM0alJiJP-sdgjDgktvbzdSgD4Z9UGftbGRGSymVpRPZaLfr5AkJqAxFhRNSWfvUFMBn49pN6eh6SggsNfoaCdlv96iU2QR5qVo6alQfNysHKw83DfxV4RK7zQAmCIMh9srNarv1jcrX8uJo2y0GwPriqiR6Q3Vcnw7OjH44DMew
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQAoIL3wuBZTES4kSkxHZi-4gQ3a62VIgW2JvlxI62okqrpkUsJ25c-Y38EmacNrSAkJC4RYrHduwZe8Z5nkfIk6RKE2sDv4u1sShZFlulXVzlXhQc_I0ioC3eDeRwqE5P9fZdmDY_RHfghpYR1ms0cDyQ3rJysHEWI9kSZkhIIGy_KGCvQV1n4nX3J0HyQBi3LpyydXofRPP8UgG4pziynxAeaRsYoaqltviT7_k7hHLbtQ17U-_6__iqG-Ta2jOlz1tVukku-PoWudxyVZ7fJl9HsMlN_fcv3_Csn9ra0XlH_kWniD2iCBie0g2-q6aupbtvKOaJgp3I0eKczs9gCesdj_rPqKUtgTVdzkC2wfudnz3Iw7diI4iQDQ1VC--x8lXjmzvkbe_l-EU_XrM4xBPwNZNYeiW0y4RPYN2F6Rd4K8WlqVaZqgKteMFcrpgDR0YWhbK2zB0TKrW6VNxlfJ_s1bPa3yPUVXlSOZ360mNWHWUZc2WmeMmdqKRKI_I0zKCZt5k6jF18QOCazMz74ZFJ5Il4M5JHZhyRw50p7gQY9FHyPInIwWbOzdqoG4iS0jzXWmY6Io-712COOCS29rNVKAMBoJB5-rcyPKSVy7OI3G3V6GcHuFAaYsKIyB0F6wpgOvDdN_XkLKQF5wo8DQnttgrWSWzCPNQsg5plgmYZsPPwcP9fBR6RK_3xq4EZHA9PHpCrLBCEICTygOwtFyv_kFwqPy4nzeIwmOIP9vszTw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZQB4jL-DkIjGEkxIlIiePE9hExuk2rKrRusJvlxI5WUaVV006MEzeu_I38JbznpKEFhITErVL84sR-z34v_fx9hLyIyjgyxuu7GBPygqWhkcqGZeZ4nkC-kXu0xfuBGA7l-blaPwvT8EN0H9wwMvx6jQHuZrZci3KIcRai2BIyJERQtm9xlJLpka39k_7ZoPsvQSReMq5tHrOW4AfxPL_cAhJUHNtPCJA0NYxR2Yhb_Cn7_B1EuZ7c-t2pf_t_vNcdst3mpvR140x3yTVX3SM3GrXKq_vk6wi2uYn7_uUbfu2nprJ01sl_0QmijyhChid0hfCqqG0E72uKTFGwF1maX9HZBSxi_aPR4StqaCNhTRdTsK3xhOdnB_bwrtgJYmR9R-XcObz5snb1A3LWf3v65jBsdRzCMWSbUSic5Mqm3EWw8oIDcDyXYuNYyVSWXlg8ZzaTzEIqI_JcGlNklnEZG1XIxKbJDulV08o9ItSWWVRaFbvCIa-ONIzZIpVJkVheChkH5KWfQT1ruDq0mX9E6JpI9YfhgY7EMT8ZiQN9GpC9jSnuDBg8o0iyKCC7qznXbVjXUCfFWaaUSFVAnneXISBxSEzlpkvfBkpALrL4b20STyyXpQF52LjRzwdIuFRQFQZEbDhY1wAJwTevVOMLTwyeSMg1BPTbOFhnsSr00LM0epb2nqUh0v2Px_9q8IzcfLff14Oj4fETcot5hRDERO6S3mK-dE_J9eJyMa7ne20s_gDPSzRl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+and+population+level+viral+infection+dynamics+revealed+by+phageFISH%2C+a+method+to+visualize+intracellular+and+free+viruses&rft.jtitle=Environmental+microbiology&rft.au=ALLERS%2C+Elke&rft.au=MORARU%2C+Cristina&rft.au=DUHAIME%2C+Melissa+B&rft.au=BENEZE%2C+Erica&rft.date=2013-08-01&rft.pub=Blackwell&rft.issn=1462-2912&rft.volume=15&rft.issue=8&rft.spage=2306&rft.epage=2318&rft_id=info:doi/10.1111%2F1462-2920.12100&rft.externalDBID=n%2Fa&rft.externalDocID=27627360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon