Early detection of Alzheimer's disease using MRI hippocampal texture

Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippoc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Human brain mapping Ročník 37; číslo 3; s. 1148 - 1161
Hlavní autoři: Sørensen, Lauge, Igel, Christian, Liv Hansen, Naja, Osler, Merete, Lauritzen, Martin, Rostrup, Egill, Nielsen, Mads
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Blackwell Publishing Ltd 01.03.2016
John Wiley & Sons, Inc
John Wiley and Sons Inc
Témata:
ISSN:1065-9471, 1097-0193
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1‐weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI‐to‐AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = −0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose‐positron emission tomography (Pearson correlation, r = −0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148–1161, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p=0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r=-0.25, p<0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography (Pearson correlation, r=-0.57, p<0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148-1161, 2016. copyright 2015 Wiley Periodicals, Inc.
Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs. 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = -0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography (Pearson correlation, r = -0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment.
Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1‐weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI‐to‐AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = −0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose‐positron emission tomography (Pearson correlation, r = −0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148–1161, 2016. © 2015 Wiley Periodicals, Inc.
Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p=0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r=-0.25, p<0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography (Pearson correlation, r=-0.57, p<0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148-1161, 2016. © 2015 Wiley Periodicals, Inc.
Author Lauritzen, Martin
Rostrup, Egill
Liv Hansen, Naja
Osler, Merete
Nielsen, Mads
Sørensen, Lauge
Igel, Christian
AuthorAffiliation 1 The Image Group, Department of Computer Science University of Copenhagen Denmark
7 Department of Clinical Neurophysiology Rigshospitalet Denmark
5 Research Centre for Prevention and Health Rigshospitalet‐Glostrup Denmark
6 Department of Neuroscience and Pharmacology University of Copenhagen Denmark
3 Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine Rigshospitalet Denmark
4 Center for Healthy Aging, University of Copenhagen Denmark
2 Biomediq A/S Denmark
AuthorAffiliation_xml – name: 1 The Image Group, Department of Computer Science University of Copenhagen Denmark
– name: 2 Biomediq A/S Denmark
– name: 4 Center for Healthy Aging, University of Copenhagen Denmark
– name: 6 Department of Neuroscience and Pharmacology University of Copenhagen Denmark
– name: 7 Department of Clinical Neurophysiology Rigshospitalet Denmark
– name: 3 Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine Rigshospitalet Denmark
– name: 5 Research Centre for Prevention and Health Rigshospitalet‐Glostrup Denmark
Author_xml – sequence: 1
  givenname: Lauge
  surname: Sørensen
  fullname: Sørensen, Lauge
  email: lauges@diku.dk
  organization: The Image Group, Department of Computer Science, University of Copenhagen, Denmark
– sequence: 2
  givenname: Christian
  surname: Igel
  fullname: Igel, Christian
  organization: The Image Group, Department of Computer Science, University of Copenhagen, Denmark
– sequence: 3
  givenname: Naja
  surname: Liv Hansen
  fullname: Liv Hansen, Naja
  organization: Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Denmark
– sequence: 4
  givenname: Merete
  surname: Osler
  fullname: Osler, Merete
  organization: Center for Healthy Aging, University of Copenhagen, Denmark
– sequence: 5
  givenname: Martin
  surname: Lauritzen
  fullname: Lauritzen, Martin
  organization: Center for Healthy Aging, University of Copenhagen, Denmark
– sequence: 6
  givenname: Egill
  surname: Rostrup
  fullname: Rostrup, Egill
  organization: Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Denmark
– sequence: 7
  givenname: Mads
  surname: Nielsen
  fullname: Nielsen, Mads
  organization: The Image Group, Department of Computer Science, University of Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26686837$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URF8s-AMoEgvYpPXbyQaptGVaqQPSCAQ7y4nvdFySOLUTYPj1OJ12VFh15Svd7xyd67OPdjrfAUKvCD4iGNPjVdUeUYZL8gztEVyqHJOS7UyzFHnJFdlF-zHeYEyIwOQF2qVSFrJgag-dnZvQrDMLA9SD813ml9lJ82cFroXwNmbWRTARsjG67jqbLy6zlet7X5u2N002wO9hDHCIni9NE-Hl_XuAvn48_3J6kV99nl2enlzlTmBJclgS4JxSogoryqquWUUxtQWzqpJKSstFwakwkrBaFYYRu5ScMDDGkgq4YAfo_ca3H6sWbA3dEEyj--BaE9baG6f_3XRupa_9T52uVUzxZPDu3iD42xHioFsXa2ga04EfoyYqxZC8xPQJqOSyLJWc0Df_oTd-DF36iYliilGOcaJePw6_Tf3QRQKON8Av18B6uydYTyXrVLK-K1lffJjfDUmRbxQupia2ChN-6Oleob99mumFOpuJ7_NCL9hfeECo3w
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7U8
7X8
JXQ
5PM
DOI 10.1002/hbm.23091
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
TOXLINE
MEDLINE - Academic
Toxline
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
TOXLINE
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
MEDLINE

Technology Research Database

TOXLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Early AD Detection Using Hippocampal Texture
EISSN 1097-0193
EndPage 1161
ExternalDocumentID PMC6867374
3946519651
26686837
HBM23091
ark_67375_WNG_R7DG5XM8_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: The Danish National Advanced Technology Foundation, Eurostars, and NORDEA Foundation/Center for Healthy Aging
– fundername: Canadian Institutes of Health Research
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFPKN
AFRAH
AFZJQ
AGQPQ
AGXDD
AHMBA
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQQKQ
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AFFHD
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
O8X
P64
7U8
7X8
JXQ
5PM
ID FETCH-LOGICAL-i5061-ef1e4422178d59bcc3b202d83d7b6766d458425a613c78a31df6413eaad1be453
IEDL.DBID WIN
ISICitedReferencesCount 158
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370243600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1065-9471
IngestDate Tue Sep 30 16:58:43 EDT 2025
Mon Sep 29 01:43:01 EDT 2025
Sat Sep 27 17:48:17 EDT 2025
Sat Nov 29 14:51:58 EST 2025
Thu Apr 03 07:04:44 EDT 2025
Tue Nov 11 03:08:24 EST 2025
Sun Sep 21 06:17:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords early diagnosis
magnetic resonance imaging
hippocampus
mild cognitive impairment
biomarker
classification
machine learning
image analysis
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i5061-ef1e4422178d59bcc3b202d83d7b6766d458425a613c78a31df6413eaad1be453
Notes istex:E010330D191A8F853CF7E026194B1D189B6BCE71
ArticleID:HBM23091
ark:/67375/WNG-R7DG5XM8-R
The Danish National Advanced Technology Foundation, Eurostars, and NORDEA Foundation/Center for Healthy Aging
As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
www.loni.usc.edu/ADNI
www.aibl.csiro.au
The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at
.
Data used in preparation of this article were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Data used in preparation of this article were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database (http://www.loni.usc.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at http://www.aibl.csiro.au.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6867374
PMID 26686837
PQID 1763732400
PQPubID 996345
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867374
proquest_miscellaneous_1776664902
proquest_miscellaneous_1764699762
proquest_journals_1763732400
pubmed_primary_26686837
wiley_primary_10_1002_hbm_23091_HBM23091
istex_primary_ark_67375_WNG_R7DG5XM8_R
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, Alzheimer's Disease Neuroimaging I (2009): MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73:287-293.
Cortes C, Mohri M (2004): AUC optimization vs. error rate minimization. Nips 313-320.
Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, Crane PK, Decarli C, Fox NC, Gunter JL, et al. (2013): Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimers Dement 9:332-337.
Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997): Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18:131-138.
Jack J, Clifford R, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJL, Whitwell J, Ward C, et al. (2008): The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685-691.
Cummings J, Zhong K (2014): Biomarker-driven therapeutic management of Alzheimer's disease: establishing the foundations. Clin Pharmacol Ther 95:67-77.
Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, et al. (2009): Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 65:403-413.
Zhang J, Yu C, Jiang G, Liu W, Tong L (2011): 3D texture analysis on MRI images of Alzheimer's disease. Brain Imaging Behav 6:61-69.
Nielsen M, Karemore G, Loog M, Raundahl J, Karssemeijer N, Otten JDM, Karsdal MA, Vachon CM, Christiansen C (2011): A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol 35:381-387.
Sanfilipo MP, Benedict RHB, Zivadinov R, Bakshi R (2004): Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22:1732-1743.
Henneman WJP, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F (2009): Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999-1007.
Fox NC, Freeborough PA (1997): Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J Magn Reson Imaging 7:1069-1075.
Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, Kemppainen N, Nagren K, Kim BC, Tsui W, and others. (2008): Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur J Nucl Med Mol Imaging 35:2169-2181.
Nyúl LG, Udupa JK (1999): On standardizing the MR image intensity scale. Magn Reson Med 42:1072-1081.
Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Reisberg B, Mlodzik B, de Leon MJ, Miller DC (1995): Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease. Dementia 6:205-210.
Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ,J, Jennings RG, Karow D, Dale A, Alzheimer's Disease Neuroimaging I (2010): Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347-354.
Achterberg HC, van der Lijn F, den Heijer T, Vernooij MW, Ikram MA, Niessen WJ, de Bruijne M (2014): Hippocampal shape is predictive for the development of dementia in a normal, elderly population. Hum Brain Mapp 35:2359-2371.
Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, et al. (2010): Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9:1118-1127.
Jack J, Clifford R, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999): Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397-1403.
Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000): The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 95:721-725.
Ramani A, Jensen JH, Helpern JA (2006): Quantitative MR imaging in Alzheimer disease. Radiology 241:26-44.
Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. (2009): The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr 21:672-687.
Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu C-Y, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, et al. (2011): Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 56:212-219.
Osler M, Lund R, Kriegbaum M, Christensen U, Andersen AM (2006): Cohort profile: the Metropolit 1953 Danish male birth cohort. Int J Epidemiol 35:541-545.
Ellis KA, Rowe CC, Villemagne VL, Martins RN, Masters CL, Salvado O, Szoeke C, Ames D, Group A (2010): Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 6:291-296.
van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA (2002): Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 21:139-149.
DeLong ER, DeLong DM, Clarke-Pearson DL (1988): Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837-845.
Frisoni GB, Jack CR (2011): Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7:171-174.
Jack CRJ, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, et al. (2011a): Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease. Alzheimers Dement 7:474-485 e4.
Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Mendez Orellana C, Meijboom R, Pinto M, Meireles JR, Garrett C, Bastos-Leite AJ, Abdulkadir A, Ronneberger O, Amoroso N, Bellotti R, Cárdenas-Peña D, Álvarez-Meza AM, Dolph CV, Iftekharuddin KM, Eskildsen SF, Coupé P, Fonov VS, Franke K, Gaser C, Ledig C, Guerrero R, Tong T, Gray KR, Moradi E, Tohka J, Routier A, Durrleman S, Sarica A, Di Fatta G, Sensi F, Chincarini A, Smith GM, Stoyanov ZV, Sørensen L, Nielsen M, Tangaro S, Inglese P, Wachinger C, Reuter M, van Swieten JC, Niessen WJ, Klein S, for The Alzheimer's Disease Neuroimaging Initiative (2015): Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111:562-579.
Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724-738.
Hansen NL, Lauritzen M, Mortensen EL, Osler M, Avlund K, Fagerlund B, Rostrup E (2014): Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain's default mode network. Hum Brain Mapp 35:4488-4498.
Tanabe JL, Amend D, Schuff N, DiSclafani V, Ezekiel F, Norman D, Fein G, Weiner MW (1997): Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18:115-123.
Lindeberg T. 2009. Scale Space. Encyclopedia of Computer Science and Engineering. John Wiley and Sons. p 2495-2504.
Osler M, Avlund K, Mortensen EL (2013): Socio-economic position early in life, cognitive development and cognitive change from young adulthood to middle age. Eur J Public Health 23:974-980.
Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87-97.
Jack J, Clifford R, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011b): Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:257-262.
Zhang J, Tong L, Wang L, Li N (2008): Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 26:1160-1166.
Castellano G, Bonilha L, Li LM, Cendes F (2004): Texture analysis of medical images. Clin Radiol 59:1061-1069.
Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, de Leon MJ (2005): Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64:1860-1867.
Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. (2002): Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341-355.
Liu Y, Teverovskiy L, Carmichael OT, Kikinis R, Shenton ME, Carter CS, Stenger VA, Davis SW, Aizenstein H, Becker JT, and others. (2004): Discriminative MR image feature analysis for automatic Schizophrenia and Alzheimer's disease classification. Miccai 3216:393-401.
Frisoni GB, Fox NC, Jack J, Clifford R, Scheltens P, Thompson PM (2010): The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67-77.
Jack J, Clifford R, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010): Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9:119-128.
Gerardin E, Chételat G, Chupin M, Cuingnet R,
2004; 22
2009; 47
2006; 35
2013; 23
2004; 23
2008; 9
2000; 95
2005; 64
2005; 65
2008; 35
1999; 42
2011; 56
2011; 58
1997; 7
2013; 9
1995; 20
1994; 344
1998; 17
2000; 55
2008; 27
1997; 18
1988; 44
2008; 26
2006; 241
1999; 52
2014; 95
2007; 68
2010; 6
2010; 9
2010; 31
2009; 21
2009; 65
2011a; 7
2002; 33
2009
1998
2011; 35
2004
2011; 6
1995; 6
2011; 7
2012; 31
2009; 73
2009; 72
2015; 111
2004; 59
2011b; 7
2002; 21
2014; 35
2004; 3216
2012; 42
References_xml – reference: Hansen NL, Lauritzen M, Mortensen EL, Osler M, Avlund K, Fagerlund B, Rostrup E (2014): Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain's default mode network. Hum Brain Mapp 35:4488-4498.
– reference: Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, Alzheimer's Disease Neuroimaging I (2009): MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73:287-293.
– reference: Frisoni GB, Jack CR (2011): Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7:171-174.
– reference: Jack J, Clifford R, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJL, Whitwell J, Ward C, et al. (2008): The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685-691.
– reference: Freeborough PA, Fox NC (1998): MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease. IEEE Trans Med Imaging 17:475-479.
– reference: Fox NC, Freeborough PA (1997): Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J Magn Reson Imaging 7:1069-1075.
– reference: Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ,J, Jennings RG, Karow D, Dale A, Alzheimer's Disease Neuroimaging I (2010): Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347-354.
– reference: Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. (2002): Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341-355.
– reference: Achterberg HC, van der Lijn F, den Heijer T, Vernooij MW, Ikram MA, Niessen WJ, de Bruijne M (2014): Hippocampal shape is predictive for the development of dementia in a normal, elderly population. Hum Brain Mapp 35:2359-2371.
– reference: Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997): Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18:131-138.
– reference: Cortes C, Vapnik V (1995): Support-vector networks. Mach Learn 20:273-297.
– reference: Jack J, Clifford R, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999): Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397-1403.
– reference: Zhang J, Yu C, Jiang G, Liu W, Tong L (2011): 3D texture analysis on MRI images of Alzheimer's disease. Brain Imaging Behav 6:61-69.
– reference: Jack CRJ, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, et al. (2011a): Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease. Alzheimers Dement 7:474-485 e4.
– reference: Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR (2000): A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia. Neurology 55:1613-1620.
– reference: Castellano G, Bonilha L, Li LM, Cendes F (2004): Texture analysis of medical images. Clin Radiol 59:1061-1069.
– reference: Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, Rei L, Squarcia S, Rodriguez G, Bellotti R, and others. (2011): Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 58:469-480.
– reference: Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, Rusinek H, Pelton GH, Honig LS, Mayeux R, et al. (2007): Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68:828-836.
– reference: Cortes C, Mohri M (2004): AUC optimization vs. error rate minimization. Nips 313-320.
– reference: Jack J, Clifford R, Shiung MM, Weigand SD, O'Brien PC, Gunter JL, Boeve BF, Knopman DS, Smith GE, Ivnik RJ, Tangalos EG, et al. (2005): Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227-1231.
– reference: van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA (2002): Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 21:139-149.
– reference: Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Mendez Orellana C, Meijboom R, Pinto M, Meireles JR, Garrett C, Bastos-Leite AJ, Abdulkadir A, Ronneberger O, Amoroso N, Bellotti R, Cárdenas-Peña D, Álvarez-Meza AM, Dolph CV, Iftekharuddin KM, Eskildsen SF, Coupé P, Fonov VS, Franke K, Gaser C, Ledig C, Guerrero R, Tong T, Gray KR, Moradi E, Tohka J, Routier A, Durrleman S, Sarica A, Di Fatta G, Sensi F, Chincarini A, Smith GM, Stoyanov ZV, Sørensen L, Nielsen M, Tangaro S, Inglese P, Wachinger C, Reuter M, van Swieten JC, Niessen WJ, Klein S, for The Alzheimer's Disease Neuroimaging Initiative (2015): Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111:562-579.
– reference: Lindeberg T. 2009. Scale Space. Encyclopedia of Computer Science and Engineering. John Wiley and Sons. p 2495-2504.
– reference: Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, et al. (2010): Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9:1118-1127.
– reference: Nielsen M, Karemore G, Loog M, Raundahl J, Karssemeijer N, Otten JDM, Karsdal MA, Vachon CM, Christiansen C (2011): A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol 35:381-387.
– reference: Henneman WJP, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F (2009): Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999-1007.
– reference: Jack J, Clifford R, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011b): Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:257-262.
– reference: Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724-738.
– reference: Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, Crane PK, Decarli C, Fox NC, Gunter JL, et al. (2013): Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimers Dement 9:332-337.
– reference: Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Reisberg B, Mlodzik B, de Leon MJ, Miller DC (1995): Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease. Dementia 6:205-210.
– reference: Sørensen L, Nielsen M, Lo P, Ashraf H, Pedersen JH, de Bruijne M (2012): Texture-based analysis of COPD: A data-driven approach. IEEE Trans Med Imaging 31:70-78.
– reference: Igel C, Heidrich-Meisner V, Glasmachers T (2008): Shark. J Mach Learn Res 9:993-996.
– reference: Zhang J, Tong L, Wang L, Li N (2008): Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 26:1160-1166.
– reference: Nyúl LG, Udupa JK (1999): On standardizing the MR image intensity scale. Magn Reson Med 42:1072-1081.
– reference: Osler M, Avlund K, Mortensen EL (2013): Socio-economic position early in life, cognitive development and cognitive change from young adulthood to middle age. Eur J Public Health 23:974-980.
– reference: Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, de Leon MJ (2005): Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64:1860-1867.
– reference: Marques J, Genant HK, Lillholm M, Dam EB (2012): Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Magn Reson Med 42:735-742.
– reference: Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000): The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 95:721-725.
– reference: Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. (2009): The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr 21:672-687.
– reference: DeLong ER, DeLong DM, Clarke-Pearson DL (1988): Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837-845.
– reference: Cummings J, Zhong K (2014): Biomarker-driven therapeutic management of Alzheimer's disease: establishing the foundations. Clin Pharmacol Ther 95:67-77.
– reference: Jack J, Clifford R, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010): Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9:119-128.
– reference: Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, et al. (2009): Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 65:403-413.
– reference: Sanfilipo MP, Benedict RHB, Zivadinov R, Bakshi R (2004): Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22:1732-1743.
– reference: Ellis KA, Rowe CC, Villemagne VL, Martins RN, Masters CL, Salvado O, Szoeke C, Ames D, Group A (2010): Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 6:291-296.
– reference: Liu Y, Teverovskiy L, Carmichael OT, Kikinis R, Shenton ME, Carter CS, Stenger VA, Davis SW, Aizenstein H, Becker JT, and others. (2004): Discriminative MR image feature analysis for automatic Schizophrenia and Alzheimer's disease classification. Miccai 3216:393-401.
– reference: Gerardin E, Chételat G, Chupin M, Cuingnet R, Desgranges B, Kim H-S, Niethammer M, Dubois B, Lehéricy S, Garnero L, et al. (2009): Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. Neuroimage 47:1476-1486.
– reference: Osler M, Lund R, Kriegbaum M, Christensen U, Andersen AM (2006): Cohort profile: the Metropolit 1953 Danish male birth cohort. Int J Epidemiol 35:541-545.
– reference: West MJ, Coleman PD, Flood DG, Troncoso JC (1994): Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 344:769-772.
– reference: Ramani A, Jensen JH, Helpern JA (2006): Quantitative MR imaging in Alzheimer disease. Radiology 241:26-44.
– reference: Braak H, Braak E (1997): Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351-357.
– reference: Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, Kemppainen N, Nagren K, Kim BC, Tsui W, and others. (2008): Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur J Nucl Med Mol Imaging 35:2169-2181.
– reference: Tanabe JL, Amend D, Schuff N, DiSclafani V, Ezekiel F, Norman D, Fein G, Weiner MW (1997): Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18:115-123.
– reference: Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87-97.
– reference: Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu C-Y, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, et al. (2011): Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 56:212-219.
– reference: Frisoni GB, Fox NC, Jack J, Clifford R, Scheltens P, Thompson PM (2010): The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67-77.
– volume: 18
  start-page: 115
  year: 1997
  end-page: 123
  article-title: Tissue segmentation of the brain in Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
– volume: 7
  start-page: 1069
  year: 1997
  end-page: 1075
  article-title: Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 1860
  year: 2005
  end-page: 1867
  article-title: Reduced hippocampal metabolism in MCI and AD: automated FDG‐PET image analysis
  publication-title: Neurology
– volume: 344
  start-page: 769
  year: 1994
  end-page: 772
  article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease
  publication-title: Lancet
– volume: 42
  start-page: 735
  year: 2012
  end-page: 742
  article-title: Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI
  publication-title: Magn Reson Med
– volume: 42
  start-page: 1072
  year: 1999
  end-page: 1081
  article-title: On standardizing the MR image intensity scale
  publication-title: Magn Reson Med
– volume: 9
  start-page: 1118
  year: 2010
  end-page: 1127
  article-title: Revising the definition of Alzheimer's disease: a new lexicon
  publication-title: Lancet Neurol
– volume: 7
  start-page: 474
  year: 2011a
  end-page: 485 e4
  article-title: Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 22
  start-page: 1732
  year: 2004
  end-page: 1743
  article-title: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method
  publication-title: Neuroimage
– volume: 65
  start-page: 403
  year: 2009
  end-page: 413
  article-title: Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects
  publication-title: Ann Neurol
– start-page: 207
  year: 1998
  end-page: 248
– volume: 59
  start-page: 1061
  year: 2004
  end-page: 1069
  article-title: Texture analysis of medical images
  publication-title: Clin Radiol
– volume: 3216
  start-page: 393
  year: 2004
  end-page: 401
  article-title: Discriminative MR image feature analysis for automatic Schizophrenia and Alzheimer's disease classification
  publication-title: Miccai
– volume: 95
  start-page: 721
  year: 2000
  end-page: 725
  article-title: The histological validation of post mortem magnetic resonance imaging‐determined hippocampal volume in Alzheimer's disease
  publication-title: Neuroscience
– volume: 18
  start-page: 351
  year: 1997
  end-page: 357
  article-title: Frequency of stages of Alzheimer‐related lesions in different age categories
  publication-title: Neurobiol Aging
– volume: 7
  start-page: 171
  year: 2011
  end-page: 174
  article-title: Harmonization of magnetic resonance‐based manual hippocampal segmentation: a mandatory step for wide clinical use
  publication-title: Alzheimers Dement
– volume: 23
  start-page: 974
  year: 2013
  end-page: 980
  article-title: Socio‐economic position early in life, cognitive development and cognitive change from young adulthood to middle age
  publication-title: Eur J Public Health
– volume: 18
  start-page: 131
  year: 1997
  end-page: 138
  article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 56
  start-page: 212
  year: 2011
  end-page: 219
  article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment
  publication-title: Neuroimage
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 55
  start-page: 1613
  year: 2000
  end-page: 1620
  article-title: A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia
  publication-title: Neurology
– volume: 35
  start-page: 2359
  year: 2014
  end-page: 2371
  article-title: Hippocampal shape is predictive for the development of dementia in a normal, elderly population
  publication-title: Hum Brain Mapp
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
– volume: 52
  start-page: 1397
  year: 1999
  end-page: 1403
  article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment
  publication-title: Neurology
– volume: 17
  start-page: 475
  year: 1998
  end-page: 479
  article-title: MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease
  publication-title: IEEE Trans Med Imaging
– volume: 31
  start-page: 347
  year: 2010
  end-page: 354
  article-title: Combining MR imaging, positron‐emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
  publication-title: AJNR Am J Neuroradiol
– volume: 26
  start-page: 1160
  year: 2008
  end-page: 1166
  article-title: Texture analysis of multiple sclerosis: a comparative study
  publication-title: Magn Reson Imaging
– volume: 6
  start-page: 291
  year: 2010
  end-page: 296
  article-title: Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative
  publication-title: Alzheimers Dement
– volume: 9
  start-page: 332
  year: 2013
  end-page: 337
  article-title: Standardization of analysis sets for reporting results from ADNI MRI data
  publication-title: Alzheimers Dement
– volume: 21
  start-page: 672
  year: 2009
  end-page: 687
  article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease
  publication-title: Int Psychogeriatr
– volume: 6
  start-page: 205
  year: 1995
  end-page: 210
  article-title: Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease
  publication-title: Dementia
– volume: 72
  start-page: 999
  year: 2009
  end-page: 1007
  article-title: Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures
  publication-title: Neurology
– volume: 35
  start-page: 4488
  year: 2014
  end-page: 4498
  article-title: Subclinical cognitive decline in middle‐age is associated with reduced task‐induced deactivation of the brain's default mode network
  publication-title: Hum Brain Mapp
– volume: 6
  start-page: 67
  year: 2010
  end-page: 77
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat Rev Neurol
– volume: 65
  start-page: 1227
  year: 2005
  end-page: 1231
  article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI
  publication-title: Neurology
– volume: 31
  start-page: 70
  year: 2012
  end-page: 78
  article-title: Texture‐based analysis of COPD: A data‐driven approach
  publication-title: IEEE Trans Med Imaging
– volume: 21
  start-page: 139
  year: 2002
  end-page: 149
  article-title: Automatic detection of abnormalities in chest radiographs using local texture analysis
  publication-title: IEEE Trans Med Imaging
– volume: 47
  start-page: 1476
  year: 2009
  end-page: 1486
  article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging
  publication-title: Neuroimage
– volume: 35
  start-page: 541
  year: 2006
  end-page: 545
  article-title: Cohort profile: the Metropolit 1953 Danish male birth cohort
  publication-title: Int J Epidemiol
– volume: 35
  start-page: 381
  year: 2011
  end-page: 387
  article-title: A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer
  publication-title: Cancer Epidemiol
– volume: 23
  start-page: 724
  year: 2004
  end-page: 738
  article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas‐based head size normalization: reliability and validation against manual measurement of total intracranial volume
  publication-title: Neuroimage
– volume: 111
  start-page: 562
  year: 2015
  end-page: 579
  article-title: Standardized evaluation of algorithms for computer‐aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
– volume: 95
  start-page: 67
  year: 2014
  end-page: 77
  article-title: Biomarker‐driven therapeutic management of Alzheimer's disease: establishing the foundations
  publication-title: Clin Pharmacol Ther
– volume: 6
  start-page: 61
  year: 2011
  end-page: 69
  article-title: 3D texture analysis on MRI images of Alzheimer's disease
  publication-title: Brain Imaging Behav
– volume: 9
  start-page: 993
  year: 2008
  end-page: 996
  article-title: Shark
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol
– start-page: 2495
  year: 2009
  end-page: 2504
– volume: 7
  start-page: 257
  year: 2011b
  end-page: 262
  article-title: Introduction to the recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 241
  start-page: 26
  year: 2006
  end-page: 44
  article-title: Quantitative MR imaging in Alzheimer disease
  publication-title: Radiology
– volume: 68
  start-page: 828
  year: 2007
  end-page: 836
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease
  publication-title: Neurology
– volume: 58
  start-page: 469
  year: 2011
  end-page: 480
  article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease
  publication-title: Neuroimage
– start-page: 313
  year: 2004
  end-page: 320
  article-title: AUC optimization vs. error rate minimization
  publication-title: Nips
– volume: 17
  start-page: 87
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Trans Med Imaging
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  article-title: Support‐vector networks
  publication-title: Mach Learn
– volume: 73
  start-page: 287
  year: 2009
  end-page: 293
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
– volume: 35
  start-page: 2169
  year: 2008
  end-page: 2181
  article-title: Regional analysis of FDG and PIB‐PET images in normal aging, mild cognitive impairment, and Alzheimer's disease
  publication-title: Eur J Nucl Med Mol Imaging
SSID ssj0011501
Score 2.5510633
Snippet Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However,...
SourceID pubmedcentral
proquest
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1148
SubjectTerms Aged
Alzheimer Disease - diagnosis
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Area Under Curve
biomarker
classification
Cognition
Cohort Studies
Databases, Factual
Early Diagnosis
Female
Glucose - metabolism
hippocampus
Hippocampus - diagnostic imaging
Hippocampus - metabolism
Hippocampus - pathology
Humans
image analysis
Image Interpretation, Computer-Assisted - methods
machine learning
magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
mild cognitive impairment
Organ Size
Positron-Emission Tomography
Prognosis
Title Early detection of Alzheimer's disease using MRI hippocampal texture
URI https://api.istex.fr/ark:/67375/WNG-R7DG5XM8-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23091
https://www.ncbi.nlm.nih.gov/pubmed/26686837
https://www.proquest.com/docview/1763732400
https://www.proquest.com/docview/1764699762
https://www.proquest.com/docview/1776664902
https://pubmed.ncbi.nlm.nih.gov/PMC6867374
Volume 37
WOSCitedRecordID wos000370243600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  issn: 1065-9471
  databaseCode: WIN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NCSFeYGx8BMZkJDR4iZYPx3a0p46xj4dWqAKtb5ad2DRiTau0RcBfv7OTBiYQQuItks-SHd_5fuc7_wzw2sQWgUBehHFBtSPVZqHCSCvkwmhW6CJiRvjHJvhoJCaT_MMWHG_uwrT8EP2Bm7MMv187A1d6efSTNHSqZ66K2d9cj6k3yqvLUZ9BQKDjgy10sWGOO_CGVShKjvqeCEjdv_z2J3T5e5Hkr-DVe5-zh_817h140IFOMmi15BFsmXoX9gY1Btyz7-SQ-DJQf76-C_eGXbZ9D049-zEpzcrXa9Vkbsng-sfUVDPTvFmSLrlDXO38ZzIcX5JptVigc8Qt5pq4kpJ1Yx7Dp7P3H99dhN2rC2GVoXMPjY0NpQmGKqLMcl0UqU6ipBRpyTXjjJUus5pkCnFAwYVK49Iy9IRGqTLWhmbpE9iu57V5BkRbJlKrIlsaTVlRKpQ1GbM2p4ZpmwRw6P-_XLTMGlI1X1yhGc_k1ehcjvnpeTYZCjkOYH-zQLKzsaWMcWvkjk8wCuBV34zW4VIeqjbztZfB-B8hV_I3GZwVo3mEMk_bNe8HhPBF4Bx4APyWNvQCjp37dktdTT1LN3bEmdAA3npt6Hu0PNGJRD2QXg_kxcnQfzz_d9EXcB-RG2uL4fZhe9WszUu4W3xdVcvmAO7wiTjw9nADkqYM5Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6aBgJeGGxcwgYYCQ1eouVqJxIvhbG1YolQNUTfLDuxacSaVmmLYL9-x04amEAIibdIPpbs-Fw--xx_BnipfI1AIC1cv4ikIdWmrsCdlssSJWkhC4-qxD42wfI8mUzSj1vwZnMXpuWH6A_cjGVYf20M3BxIH_1kDZ3KmSljNlfXb0QUkbu5TzLK-xwCQh273cIg66bogze8Ql5w1HdFSGr-5vc_4cvfyyR_ha82_pzs_N_I78HdDneSQaso92FL1buwN6hxzz37QQ6JrQS1R-y7cCvrEu57cGwJkEmpVrZkqyZzTQYXl1NVzVTzakm6_A4x5fNfSDYekWm1WGB8RC9zQUxVybpRD-DTyfvzd0O3e3jBrWKM767SvoqiAHcrSRmnsihCGXhBmYQlk5RRWprkahALhAIFS0Tol5piMFRClL5UURw-hO16XqvHQKSmSaiFp0slI1qUAmVVTLVOI0WlDhw4tAvAFy25BhfNV1NrxmL-OT_lY3Z8Gk-yhI8dONisEO_MbMl99I7MUAp6Drzom9FATNZD1Gq-tjIRTRF1BX-TwVmhCnko86hd9H5AiGASnANzgF1Th17AEHRfb6mrqSXqxo44k8iB11Yd-h4tVXTAUQ-41QM-fJvZjyf_Lvocbg_PszN-Nso_7MMdBHK0rY07gO1Vs1ZP4WbxbVUtm2fWLK4AMr8QLQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NA028DNhgBAYYCQ1eouXDsROJl0LpVkGrqQLRNyuObRptTau0RcBfz9lJAxMIIfEWyWfJju_jZ9_5Z4DnOjQIBLLCDwsqLak283Pcafk81ZIVsgiYTt1jE3w8TqfT7GIHXm3vwjT8EN2Bm7UM56-tgeulMqc_WUNncm7LmO3V9RuUYeiz90mG4y6HgFDHbbcwyPoZ-uAtr1AQnXZdEZLav_n1T_jy9zLJX-Griz-D2_838juw3-JO0msU5S7s6OoADnsV7rnn38gJcZWg7oj9APZGbcL9EPqOAJkovXYlWxVZGNK7-j7T5VzXL1akze8QWz7_mYwmQzIrl0uMj-hlroitKtnU-h58HLz98Obcbx9e8MsE47uvTagpjXC3kqokk0URyyiIVBorLhlnTNnkapTkCAUKnuZxqAzDYKjzXIVS0yS-D7vVotIPgEjD0tjkgVFaUlaoHGV1wozJqGbSRB6cuAUQy4ZcQ-T1pa0144n4ND4TE94_S6ajVEw8ON6ukGjNbCVC9I7cUgoGHjzrmtFAbNYjr_Ri42QoyxB1RX-TwVkxmgUoc9QsejcgRDApzoF7wK-pQydgCbqvt1TlzBF1Y0ecCfXgpVOHrkdDFR0J1APh9ECcvx65j4f_LvoU9i76A_F-OH73CG4hjmNNadwx7K7rjX4MN4sv63JVP3FW8QOLoA-f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+Alzheimer%27s+disease+using+MRI+hippocampal+texture&rft.jtitle=Human+brain+mapping&rft.au=S%C3%B8rensen%2C+Lauge&rft.au=Igel%2C+Christian&rft.au=Liv+Hansen%2C+Naja&rft.au=Osler%2C+Merete&rft.date=2016-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=3&rft.spage=1148&rft.epage=1161&rft_id=info:doi/10.1002%2Fhbm.23091&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_R7DG5XM8_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon