Early detection of Alzheimer's disease using MRI hippocampal texture
Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippoc...
Uloženo v:
| Vydáno v: | Human brain mapping Ročník 37; číslo 3; s. 1148 - 1161 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Blackwell Publishing Ltd
01.03.2016
John Wiley & Sons, Inc John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 1065-9471, 1097-0193 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1‐weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI‐to‐AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = −0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose‐positron emission tomography (Pearson correlation, r = −0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148–1161, 2016. © 2015 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p=0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r=-0.25, p<0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography (Pearson correlation, r=-0.57, p<0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148-1161, 2016. copyright 2015 Wiley Periodicals, Inc. Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs. 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = -0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography (Pearson correlation, r = -0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1‐weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI‐to‐AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p = 0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r = −0.25, p < 0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose‐positron emission tomography (Pearson correlation, r = −0.57, p < 0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148–1161, 2016. © 2015 Wiley Periodicals, Inc. Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However, it is unknown whether hippocampal texture changes in persons with mild cognitive impairment (MCI) that does not have a change in hippocampal volume. We tested the hypothesis that hippocampal texture has association to early cognitive loss beyond that of volumetric changes. The texture marker was trained and evaluated using T1-weighted MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and subsequently applied to score independent data sets from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) and the Metropolit 1953 Danish Male Birth Cohort (Metropolit). Hippocampal texture was superior to volume reduction as predictor of MCI-to-AD conversion in ADNI (area under the receiver operating characteristic curve [AUC] 0.74 vs 0.67; DeLong test, p=0.005), and provided even better prognostic results in AIBL (AUC 0.83). Hippocampal texture, but not volume, correlated with Addenbrooke's cognitive examination score (Pearson correlation, r=-0.25, p<0.001) in the Metropolit cohort. The hippocampal texture marker correlated with hippocampal glucose metabolism as indicated by fluorodeoxyglucose-positron emission tomography (Pearson correlation, r=-0.57, p<0.001). Texture statistics remained significant after adjustment for volume in all cases, and the combination of texture and volume did not improve diagnostic or prognostic AUCs significantly. Our study highlights the presence of hippocampal texture abnormalities in MCI, and the possibility that texture may serve as a prognostic neuroimaging biomarker of early cognitive impairment. Hum Brain Mapp 37:1148-1161, 2016. © 2015 Wiley Periodicals, Inc. |
| Author | Lauritzen, Martin Rostrup, Egill Liv Hansen, Naja Osler, Merete Nielsen, Mads Sørensen, Lauge Igel, Christian |
| AuthorAffiliation | 1 The Image Group, Department of Computer Science University of Copenhagen Denmark 7 Department of Clinical Neurophysiology Rigshospitalet Denmark 5 Research Centre for Prevention and Health Rigshospitalet‐Glostrup Denmark 6 Department of Neuroscience and Pharmacology University of Copenhagen Denmark 3 Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine Rigshospitalet Denmark 4 Center for Healthy Aging, University of Copenhagen Denmark 2 Biomediq A/S Denmark |
| AuthorAffiliation_xml | – name: 1 The Image Group, Department of Computer Science University of Copenhagen Denmark – name: 2 Biomediq A/S Denmark – name: 4 Center for Healthy Aging, University of Copenhagen Denmark – name: 6 Department of Neuroscience and Pharmacology University of Copenhagen Denmark – name: 7 Department of Clinical Neurophysiology Rigshospitalet Denmark – name: 3 Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine Rigshospitalet Denmark – name: 5 Research Centre for Prevention and Health Rigshospitalet‐Glostrup Denmark |
| Author_xml | – sequence: 1 givenname: Lauge surname: Sørensen fullname: Sørensen, Lauge email: lauges@diku.dk organization: The Image Group, Department of Computer Science, University of Copenhagen, Denmark – sequence: 2 givenname: Christian surname: Igel fullname: Igel, Christian organization: The Image Group, Department of Computer Science, University of Copenhagen, Denmark – sequence: 3 givenname: Naja surname: Liv Hansen fullname: Liv Hansen, Naja organization: Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Denmark – sequence: 4 givenname: Merete surname: Osler fullname: Osler, Merete organization: Center for Healthy Aging, University of Copenhagen, Denmark – sequence: 5 givenname: Martin surname: Lauritzen fullname: Lauritzen, Martin organization: Center for Healthy Aging, University of Copenhagen, Denmark – sequence: 6 givenname: Egill surname: Rostrup fullname: Rostrup, Egill organization: Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Denmark – sequence: 7 givenname: Mads surname: Nielsen fullname: Nielsen, Mads organization: The Image Group, Department of Computer Science, University of Copenhagen, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26686837$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URF8s-AMoEgvYpPXbyQaptGVaqQPSCAQ7y4nvdFySOLUTYPj1OJ12VFh15Svd7xyd67OPdjrfAUKvCD4iGNPjVdUeUYZL8gztEVyqHJOS7UyzFHnJFdlF-zHeYEyIwOQF2qVSFrJgag-dnZvQrDMLA9SD813ml9lJ82cFroXwNmbWRTARsjG67jqbLy6zlet7X5u2N002wO9hDHCIni9NE-Hl_XuAvn48_3J6kV99nl2enlzlTmBJclgS4JxSogoryqquWUUxtQWzqpJKSstFwakwkrBaFYYRu5ScMDDGkgq4YAfo_ca3H6sWbA3dEEyj--BaE9baG6f_3XRupa_9T52uVUzxZPDu3iD42xHioFsXa2ga04EfoyYqxZC8xPQJqOSyLJWc0Df_oTd-DF36iYliilGOcaJePw6_Tf3QRQKON8Av18B6uydYTyXrVLK-K1lffJjfDUmRbxQupia2ChN-6Oleob99mumFOpuJ7_NCL9hfeECo3w |
| ContentType | Journal Article |
| Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
| CorporateAuthor | Alzheimer's Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing |
| CorporateAuthor_xml | – name: Alzheimer's Disease Neuroimaging Initiative and the Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing |
| DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7U8 7X8 JXQ 5PM |
| DOI | 10.1002/hbm.23091 |
| DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts TOXLINE MEDLINE - Academic Toxline PubMed Central (Full Participant titles) |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management TOXLINE MEDLINE - Academic |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE Technology Research Database TOXLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| DocumentTitleAlternate | Early AD Detection Using Hippocampal Texture |
| EISSN | 1097-0193 |
| EndPage | 1161 |
| ExternalDocumentID | PMC6867374 3946519651 26686837 HBM23091 ark_67375_WNG_R7DG5XM8_R |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: The Danish National Advanced Technology Foundation, Eurostars, and NORDEA Foundation/Center for Healthy Aging – fundername: Canadian Institutes of Health Research |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFPKN AFRAH AFZJQ AGQPQ AGXDD AHMBA AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQQKQ PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AFFHD AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE ALIPV CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. O8X P64 7U8 7X8 JXQ 5PM |
| ID | FETCH-LOGICAL-i5061-ef1e4422178d59bcc3b202d83d7b6766d458425a613c78a31df6413eaad1be453 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 158 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370243600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1065-9471 |
| IngestDate | Tue Sep 30 16:58:43 EDT 2025 Mon Sep 29 01:43:01 EDT 2025 Sat Sep 27 17:48:17 EDT 2025 Sat Nov 29 14:51:58 EST 2025 Thu Apr 03 07:04:44 EDT 2025 Tue Nov 11 03:08:24 EST 2025 Sun Sep 21 06:17:58 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | early diagnosis magnetic resonance imaging hippocampus mild cognitive impairment biomarker classification machine learning image analysis |
| Language | English |
| License | 2015 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i5061-ef1e4422178d59bcc3b202d83d7b6766d458425a613c78a31df6413eaad1be453 |
| Notes | istex:E010330D191A8F853CF7E026194B1D189B6BCE71 ArticleID:HBM23091 ark:/67375/WNG-R7DG5XM8-R The Danish National Advanced Technology Foundation, Eurostars, and NORDEA Foundation/Center for Healthy Aging As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf www.loni.usc.edu/ADNI www.aibl.csiro.au The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at . Data used in preparation of this article were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Data used in preparation of this article were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) and from the Australian Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) which was made available at the ADNI database (http://www.loni.usc.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. The AIBL researchers contributed data but did not participate in analysis or writing of this report. AIBL researchers are listed at http://www.aibl.csiro.au. |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6867374 |
| PMID | 26686837 |
| PQID | 1763732400 |
| PQPubID | 996345 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6867374 proquest_miscellaneous_1776664902 proquest_miscellaneous_1764699762 proquest_journals_1763732400 pubmed_primary_26686837 wiley_primary_10_1002_hbm_23091_HBM23091 istex_primary_ark_67375_WNG_R7DG5XM8_R |
| PublicationCentury | 2000 |
| PublicationDate | March 2016 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
| PublicationTitle | Human brain mapping |
| PublicationTitleAlternate | Hum. Brain Mapp |
| PublicationYear | 2016 |
| Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, Alzheimer's Disease Neuroimaging I (2009): MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73:287-293. Cortes C, Mohri M (2004): AUC optimization vs. error rate minimization. Nips 313-320. Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, Crane PK, Decarli C, Fox NC, Gunter JL, et al. (2013): Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimers Dement 9:332-337. Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997): Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18:131-138. Jack J, Clifford R, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJL, Whitwell J, Ward C, et al. (2008): The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685-691. Cummings J, Zhong K (2014): Biomarker-driven therapeutic management of Alzheimer's disease: establishing the foundations. Clin Pharmacol Ther 95:67-77. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, et al. (2009): Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 65:403-413. Zhang J, Yu C, Jiang G, Liu W, Tong L (2011): 3D texture analysis on MRI images of Alzheimer's disease. Brain Imaging Behav 6:61-69. Nielsen M, Karemore G, Loog M, Raundahl J, Karssemeijer N, Otten JDM, Karsdal MA, Vachon CM, Christiansen C (2011): A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol 35:381-387. Sanfilipo MP, Benedict RHB, Zivadinov R, Bakshi R (2004): Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22:1732-1743. Henneman WJP, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F (2009): Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999-1007. Fox NC, Freeborough PA (1997): Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J Magn Reson Imaging 7:1069-1075. Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, Kemppainen N, Nagren K, Kim BC, Tsui W, and others. (2008): Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur J Nucl Med Mol Imaging 35:2169-2181. Nyúl LG, Udupa JK (1999): On standardizing the MR image intensity scale. Magn Reson Med 42:1072-1081. Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Reisberg B, Mlodzik B, de Leon MJ, Miller DC (1995): Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease. Dementia 6:205-210. Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ,J, Jennings RG, Karow D, Dale A, Alzheimer's Disease Neuroimaging I (2010): Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347-354. Achterberg HC, van der Lijn F, den Heijer T, Vernooij MW, Ikram MA, Niessen WJ, de Bruijne M (2014): Hippocampal shape is predictive for the development of dementia in a normal, elderly population. Hum Brain Mapp 35:2359-2371. Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, et al. (2010): Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9:1118-1127. Jack J, Clifford R, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999): Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397-1403. Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000): The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 95:721-725. Ramani A, Jensen JH, Helpern JA (2006): Quantitative MR imaging in Alzheimer disease. Radiology 241:26-44. Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. (2009): The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr 21:672-687. Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu C-Y, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, et al. (2011): Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 56:212-219. Osler M, Lund R, Kriegbaum M, Christensen U, Andersen AM (2006): Cohort profile: the Metropolit 1953 Danish male birth cohort. Int J Epidemiol 35:541-545. Ellis KA, Rowe CC, Villemagne VL, Martins RN, Masters CL, Salvado O, Szoeke C, Ames D, Group A (2010): Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 6:291-296. van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA (2002): Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 21:139-149. DeLong ER, DeLong DM, Clarke-Pearson DL (1988): Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837-845. Frisoni GB, Jack CR (2011): Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7:171-174. Jack CRJ, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, et al. (2011a): Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease. Alzheimers Dement 7:474-485 e4. Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Mendez Orellana C, Meijboom R, Pinto M, Meireles JR, Garrett C, Bastos-Leite AJ, Abdulkadir A, Ronneberger O, Amoroso N, Bellotti R, Cárdenas-Peña D, Álvarez-Meza AM, Dolph CV, Iftekharuddin KM, Eskildsen SF, Coupé P, Fonov VS, Franke K, Gaser C, Ledig C, Guerrero R, Tong T, Gray KR, Moradi E, Tohka J, Routier A, Durrleman S, Sarica A, Di Fatta G, Sensi F, Chincarini A, Smith GM, Stoyanov ZV, Sørensen L, Nielsen M, Tangaro S, Inglese P, Wachinger C, Reuter M, van Swieten JC, Niessen WJ, Klein S, for The Alzheimer's Disease Neuroimaging Initiative (2015): Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111:562-579. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724-738. Hansen NL, Lauritzen M, Mortensen EL, Osler M, Avlund K, Fagerlund B, Rostrup E (2014): Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain's default mode network. Hum Brain Mapp 35:4488-4498. Tanabe JL, Amend D, Schuff N, DiSclafani V, Ezekiel F, Norman D, Fein G, Weiner MW (1997): Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18:115-123. Lindeberg T. 2009. Scale Space. Encyclopedia of Computer Science and Engineering. John Wiley and Sons. p 2495-2504. Osler M, Avlund K, Mortensen EL (2013): Socio-economic position early in life, cognitive development and cognitive change from young adulthood to middle age. Eur J Public Health 23:974-980. Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87-97. Jack J, Clifford R, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011b): Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:257-262. Zhang J, Tong L, Wang L, Li N (2008): Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 26:1160-1166. Castellano G, Bonilha L, Li LM, Cendes F (2004): Texture analysis of medical images. Clin Radiol 59:1061-1069. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, de Leon MJ (2005): Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64:1860-1867. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. (2002): Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341-355. Liu Y, Teverovskiy L, Carmichael OT, Kikinis R, Shenton ME, Carter CS, Stenger VA, Davis SW, Aizenstein H, Becker JT, and others. (2004): Discriminative MR image feature analysis for automatic Schizophrenia and Alzheimer's disease classification. Miccai 3216:393-401. Frisoni GB, Fox NC, Jack J, Clifford R, Scheltens P, Thompson PM (2010): The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67-77. Jack J, Clifford R, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010): Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9:119-128. Gerardin E, Chételat G, Chupin M, Cuingnet R, 2004; 22 2009; 47 2006; 35 2013; 23 2004; 23 2008; 9 2000; 95 2005; 64 2005; 65 2008; 35 1999; 42 2011; 56 2011; 58 1997; 7 2013; 9 1995; 20 1994; 344 1998; 17 2000; 55 2008; 27 1997; 18 1988; 44 2008; 26 2006; 241 1999; 52 2014; 95 2007; 68 2010; 6 2010; 9 2010; 31 2009; 21 2009; 65 2011a; 7 2002; 33 2009 1998 2011; 35 2004 2011; 6 1995; 6 2011; 7 2012; 31 2009; 73 2009; 72 2015; 111 2004; 59 2011b; 7 2002; 21 2014; 35 2004; 3216 2012; 42 |
| References_xml | – reference: Hansen NL, Lauritzen M, Mortensen EL, Osler M, Avlund K, Fagerlund B, Rostrup E (2014): Subclinical cognitive decline in middle-age is associated with reduced task-induced deactivation of the brain's default mode network. Hum Brain Mapp 35:4488-4498. – reference: Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR, Alzheimer's Disease Neuroimaging I (2009): MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73:287-293. – reference: Frisoni GB, Jack CR (2011): Harmonization of magnetic resonance-based manual hippocampal segmentation: a mandatory step for wide clinical use. Alzheimers Dement 7:171-174. – reference: Jack J, Clifford R, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJL, Whitwell J, Ward C, et al. (2008): The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685-691. – reference: Freeborough PA, Fox NC (1998): MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease. IEEE Trans Med Imaging 17:475-479. – reference: Fox NC, Freeborough PA (1997): Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J Magn Reson Imaging 7:1069-1075. – reference: Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ,J, Jennings RG, Karow D, Dale A, Alzheimer's Disease Neuroimaging I (2010): Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31:347-354. – reference: Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, et al. (2002): Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341-355. – reference: Achterberg HC, van der Lijn F, den Heijer T, Vernooij MW, Ikram MA, Niessen WJ, de Bruijne M (2014): Hippocampal shape is predictive for the development of dementia in a normal, elderly population. Hum Brain Mapp 35:2359-2371. – reference: Convit A, De Leon MJ, Tarshish C, De Santi S, Tsui W, Rusinek H, George A (1997): Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging 18:131-138. – reference: Cortes C, Vapnik V (1995): Support-vector networks. Mach Learn 20:273-297. – reference: Jack J, Clifford R, Petersen RC, Xu YC, O'Brien PC, Smith GE, Ivnik RJ, Boeve BF, Waring SC, Tangalos EG, Kokmen E (1999): Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52:1397-1403. – reference: Zhang J, Yu C, Jiang G, Liu W, Tong L (2011): 3D texture analysis on MRI images of Alzheimer's disease. Brain Imaging Behav 6:61-69. – reference: Jack CRJ, Barkhof F, Bernstein MA, Cantillon M, Cole PE, Decarli C, Dubois B, Duchesne S, Fox NC, Frisoni GB, et al. (2011a): Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease. Alzheimers Dement 7:474-485 e4. – reference: Mathuranath PS, Nestor PJ, Berrios GE, Rakowicz W, Hodges JR (2000): A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia. Neurology 55:1613-1620. – reference: Castellano G, Bonilha L, Li LM, Cendes F (2004): Texture analysis of medical images. Clin Radiol 59:1061-1069. – reference: Chincarini A, Bosco P, Calvini P, Gemme G, Esposito M, Olivieri C, Rei L, Squarcia S, Rodriguez G, Bellotti R, and others. (2011): Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Neuroimage 58:469-480. – reference: Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, Rusinek H, Pelton GH, Honig LS, Mayeux R, et al. (2007): Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology 68:828-836. – reference: Cortes C, Mohri M (2004): AUC optimization vs. error rate minimization. Nips 313-320. – reference: Jack J, Clifford R, Shiung MM, Weigand SD, O'Brien PC, Gunter JL, Boeve BF, Knopman DS, Smith GE, Ivnik RJ, Tangalos EG, et al. (2005): Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI. Neurology 65:1227-1231. – reference: van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA (2002): Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 21:139-149. – reference: Bron EE, Smits M, van der Flier WM, Vrenken H, Barkhof F, Scheltens P, Papma JM, Steketee RM, Mendez Orellana C, Meijboom R, Pinto M, Meireles JR, Garrett C, Bastos-Leite AJ, Abdulkadir A, Ronneberger O, Amoroso N, Bellotti R, Cárdenas-Peña D, Álvarez-Meza AM, Dolph CV, Iftekharuddin KM, Eskildsen SF, Coupé P, Fonov VS, Franke K, Gaser C, Ledig C, Guerrero R, Tong T, Gray KR, Moradi E, Tohka J, Routier A, Durrleman S, Sarica A, Di Fatta G, Sensi F, Chincarini A, Smith GM, Stoyanov ZV, Sørensen L, Nielsen M, Tangaro S, Inglese P, Wachinger C, Reuter M, van Swieten JC, Niessen WJ, Klein S, for The Alzheimer's Disease Neuroimaging Initiative (2015): Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage 111:562-579. – reference: Lindeberg T. 2009. Scale Space. Encyclopedia of Computer Science and Engineering. John Wiley and Sons. p 2495-2504. – reference: Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, et al. (2010): Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 9:1118-1127. – reference: Nielsen M, Karemore G, Loog M, Raundahl J, Karssemeijer N, Otten JDM, Karsdal MA, Vachon CM, Christiansen C (2011): A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer. Cancer Epidemiol 35:381-387. – reference: Henneman WJP, Sluimer JD, Barnes J, van der Flier WM, Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F (2009): Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999-1007. – reference: Jack J, Clifford R, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011b): Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:257-262. – reference: Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004): A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724-738. – reference: Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, Crane PK, Decarli C, Fox NC, Gunter JL, et al. (2013): Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimers Dement 9:332-337. – reference: Bobinski M, Wegiel J, Wisniewski HM, Tarnawski M, Reisberg B, Mlodzik B, de Leon MJ, Miller DC (1995): Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease. Dementia 6:205-210. – reference: Sørensen L, Nielsen M, Lo P, Ashraf H, Pedersen JH, de Bruijne M (2012): Texture-based analysis of COPD: A data-driven approach. IEEE Trans Med Imaging 31:70-78. – reference: Igel C, Heidrich-Meisner V, Glasmachers T (2008): Shark. J Mach Learn Res 9:993-996. – reference: Zhang J, Tong L, Wang L, Li N (2008): Texture analysis of multiple sclerosis: a comparative study. Magn Reson Imaging 26:1160-1166. – reference: Nyúl LG, Udupa JK (1999): On standardizing the MR image intensity scale. Magn Reson Med 42:1072-1081. – reference: Osler M, Avlund K, Mortensen EL (2013): Socio-economic position early in life, cognitive development and cognitive change from young adulthood to middle age. Eur J Public Health 23:974-980. – reference: Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, Li Y, Boppana M, de Leon MJ (2005): Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64:1860-1867. – reference: Marques J, Genant HK, Lillholm M, Dam EB (2012): Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Magn Reson Med 42:735-742. – reference: Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, Rusinek H, Wisniewski HM (2000): The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer's disease. Neuroscience 95:721-725. – reference: Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. (2009): The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease. Int Psychogeriatr 21:672-687. – reference: DeLong ER, DeLong DM, Clarke-Pearson DL (1988): Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837-845. – reference: Cummings J, Zhong K (2014): Biomarker-driven therapeutic management of Alzheimer's disease: establishing the foundations. Clin Pharmacol Ther 95:67-77. – reference: Jack J, Clifford R, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010): Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 9:119-128. – reference: Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, et al. (2009): Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 65:403-413. – reference: Sanfilipo MP, Benedict RHB, Zivadinov R, Bakshi R (2004): Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method. Neuroimage 22:1732-1743. – reference: Ellis KA, Rowe CC, Villemagne VL, Martins RN, Masters CL, Salvado O, Szoeke C, Ames D, Group A (2010): Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative. Alzheimers Dement 6:291-296. – reference: Liu Y, Teverovskiy L, Carmichael OT, Kikinis R, Shenton ME, Carter CS, Stenger VA, Davis SW, Aizenstein H, Becker JT, and others. (2004): Discriminative MR image feature analysis for automatic Schizophrenia and Alzheimer's disease classification. Miccai 3216:393-401. – reference: Gerardin E, Chételat G, Chupin M, Cuingnet R, Desgranges B, Kim H-S, Niethammer M, Dubois B, Lehéricy S, Garnero L, et al. (2009): Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. Neuroimage 47:1476-1486. – reference: Osler M, Lund R, Kriegbaum M, Christensen U, Andersen AM (2006): Cohort profile: the Metropolit 1953 Danish male birth cohort. Int J Epidemiol 35:541-545. – reference: West MJ, Coleman PD, Flood DG, Troncoso JC (1994): Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 344:769-772. – reference: Ramani A, Jensen JH, Helpern JA (2006): Quantitative MR imaging in Alzheimer disease. Radiology 241:26-44. – reference: Braak H, Braak E (1997): Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351-357. – reference: Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, Kemppainen N, Nagren K, Kim BC, Tsui W, and others. (2008): Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer's disease. Eur J Nucl Med Mol Imaging 35:2169-2181. – reference: Tanabe JL, Amend D, Schuff N, DiSclafani V, Ezekiel F, Norman D, Fein G, Weiner MW (1997): Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18:115-123. – reference: Sled JG, Zijdenbos AP, Evans AC (1998): A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87-97. – reference: Costafreda SG, Dinov ID, Tu Z, Shi Y, Liu C-Y, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, et al. (2011): Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 56:212-219. – reference: Frisoni GB, Fox NC, Jack J, Clifford R, Scheltens P, Thompson PM (2010): The clinical use of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67-77. – volume: 18 start-page: 115 year: 1997 end-page: 123 article-title: Tissue segmentation of the brain in Alzheimer disease publication-title: AJNR Am J Neuroradiol – volume: 7 start-page: 1069 year: 1997 end-page: 1075 article-title: Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease publication-title: J Magn Reson Imaging – volume: 64 start-page: 1860 year: 2005 end-page: 1867 article-title: Reduced hippocampal metabolism in MCI and AD: automated FDG‐PET image analysis publication-title: Neurology – volume: 344 start-page: 769 year: 1994 end-page: 772 article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease publication-title: Lancet – volume: 42 start-page: 735 year: 2012 end-page: 742 article-title: Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI publication-title: Magn Reson Med – volume: 42 start-page: 1072 year: 1999 end-page: 1081 article-title: On standardizing the MR image intensity scale publication-title: Magn Reson Med – volume: 9 start-page: 1118 year: 2010 end-page: 1127 article-title: Revising the definition of Alzheimer's disease: a new lexicon publication-title: Lancet Neurol – volume: 7 start-page: 474 year: 2011a end-page: 485 e4 article-title: Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer's disease publication-title: Alzheimers Dement – volume: 22 start-page: 1732 year: 2004 end-page: 1743 article-title: Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: the proportion vs. residual method publication-title: Neuroimage – volume: 65 start-page: 403 year: 2009 end-page: 413 article-title: Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects publication-title: Ann Neurol – start-page: 207 year: 1998 end-page: 248 – volume: 59 start-page: 1061 year: 2004 end-page: 1069 article-title: Texture analysis of medical images publication-title: Clin Radiol – volume: 3216 start-page: 393 year: 2004 end-page: 401 article-title: Discriminative MR image feature analysis for automatic Schizophrenia and Alzheimer's disease classification publication-title: Miccai – volume: 95 start-page: 721 year: 2000 end-page: 725 article-title: The histological validation of post mortem magnetic resonance imaging‐determined hippocampal volume in Alzheimer's disease publication-title: Neuroscience – volume: 18 start-page: 351 year: 1997 end-page: 357 article-title: Frequency of stages of Alzheimer‐related lesions in different age categories publication-title: Neurobiol Aging – volume: 7 start-page: 171 year: 2011 end-page: 174 article-title: Harmonization of magnetic resonance‐based manual hippocampal segmentation: a mandatory step for wide clinical use publication-title: Alzheimers Dement – volume: 23 start-page: 974 year: 2013 end-page: 980 article-title: Socio‐economic position early in life, cognitive development and cognitive change from young adulthood to middle age publication-title: Eur J Public Health – volume: 18 start-page: 131 year: 1997 end-page: 138 article-title: Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease publication-title: Neurobiol Aging – volume: 56 start-page: 212 year: 2011 end-page: 219 article-title: Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment publication-title: Neuroimage – volume: 44 start-page: 837 year: 1988 end-page: 845 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 55 start-page: 1613 year: 2000 end-page: 1620 article-title: A brief cognitive test battery to differentiate Alzheimer's disease and frontotemporal dementia publication-title: Neurology – volume: 35 start-page: 2359 year: 2014 end-page: 2371 article-title: Hippocampal shape is predictive for the development of dementia in a normal, elderly population publication-title: Hum Brain Mapp – volume: 27 start-page: 685 year: 2008 end-page: 691 article-title: The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J Magn Reson Imaging – volume: 52 start-page: 1397 year: 1999 end-page: 1403 article-title: Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment publication-title: Neurology – volume: 17 start-page: 475 year: 1998 end-page: 479 article-title: MR image texture analysis applied to the diagnosis and tracking of Alzheimer's disease publication-title: IEEE Trans Med Imaging – volume: 31 start-page: 347 year: 2010 end-page: 354 article-title: Combining MR imaging, positron‐emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease publication-title: AJNR Am J Neuroradiol – volume: 26 start-page: 1160 year: 2008 end-page: 1166 article-title: Texture analysis of multiple sclerosis: a comparative study publication-title: Magn Reson Imaging – volume: 6 start-page: 291 year: 2010 end-page: 296 article-title: Addressing population aging and Alzheimer's disease through the Australian imaging biomarkers and lifestyle study: collaboration with the Alzheimer's Disease Neuroimaging Initiative publication-title: Alzheimers Dement – volume: 9 start-page: 332 year: 2013 end-page: 337 article-title: Standardization of analysis sets for reporting results from ADNI MRI data publication-title: Alzheimers Dement – volume: 21 start-page: 672 year: 2009 end-page: 687 article-title: The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer's disease publication-title: Int Psychogeriatr – volume: 6 start-page: 205 year: 1995 end-page: 210 article-title: Atrophy of hippocampal formation subdivisions correlates with stage and duration of Alzheimer disease publication-title: Dementia – volume: 72 start-page: 999 year: 2009 end-page: 1007 article-title: Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures publication-title: Neurology – volume: 35 start-page: 4488 year: 2014 end-page: 4498 article-title: Subclinical cognitive decline in middle‐age is associated with reduced task‐induced deactivation of the brain's default mode network publication-title: Hum Brain Mapp – volume: 6 start-page: 67 year: 2010 end-page: 77 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat Rev Neurol – volume: 65 start-page: 1227 year: 2005 end-page: 1231 article-title: Brain atrophy rates predict subsequent clinical conversion in normal elderly and amnestic MCI publication-title: Neurology – volume: 31 start-page: 70 year: 2012 end-page: 78 article-title: Texture‐based analysis of COPD: A data‐driven approach publication-title: IEEE Trans Med Imaging – volume: 21 start-page: 139 year: 2002 end-page: 149 article-title: Automatic detection of abnormalities in chest radiographs using local texture analysis publication-title: IEEE Trans Med Imaging – volume: 47 start-page: 1476 year: 2009 end-page: 1486 article-title: Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging publication-title: Neuroimage – volume: 35 start-page: 541 year: 2006 end-page: 545 article-title: Cohort profile: the Metropolit 1953 Danish male birth cohort publication-title: Int J Epidemiol – volume: 35 start-page: 381 year: 2011 end-page: 387 article-title: A novel and automatic mammographic texture resemblance marker is an independent risk factor for breast cancer publication-title: Cancer Epidemiol – volume: 23 start-page: 724 year: 2004 end-page: 738 article-title: A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas‐based head size normalization: reliability and validation against manual measurement of total intracranial volume publication-title: Neuroimage – volume: 111 start-page: 562 year: 2015 end-page: 579 article-title: Standardized evaluation of algorithms for computer‐aided diagnosis of dementia based on structural MRI: the CADDementia challenge publication-title: Neuroimage – volume: 95 start-page: 67 year: 2014 end-page: 77 article-title: Biomarker‐driven therapeutic management of Alzheimer's disease: establishing the foundations publication-title: Clin Pharmacol Ther – volume: 6 start-page: 61 year: 2011 end-page: 69 article-title: 3D texture analysis on MRI images of Alzheimer's disease publication-title: Brain Imaging Behav – volume: 9 start-page: 993 year: 2008 end-page: 996 article-title: Shark publication-title: J Mach Learn Res – volume: 9 start-page: 119 year: 2010 end-page: 128 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol – start-page: 2495 year: 2009 end-page: 2504 – volume: 7 start-page: 257 year: 2011b end-page: 262 article-title: Introduction to the recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 241 start-page: 26 year: 2006 end-page: 44 article-title: Quantitative MR imaging in Alzheimer disease publication-title: Radiology – volume: 68 start-page: 828 year: 2007 end-page: 836 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease publication-title: Neurology – volume: 58 start-page: 469 year: 2011 end-page: 480 article-title: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease publication-title: Neuroimage – start-page: 313 year: 2004 end-page: 320 article-title: AUC optimization vs. error rate minimization publication-title: Nips – volume: 17 start-page: 87 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Trans Med Imaging – volume: 20 start-page: 273 year: 1995 end-page: 297 article-title: Support‐vector networks publication-title: Mach Learn – volume: 73 start-page: 287 year: 2009 end-page: 293 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology – volume: 35 start-page: 2169 year: 2008 end-page: 2181 article-title: Regional analysis of FDG and PIB‐PET images in normal aging, mild cognitive impairment, and Alzheimer's disease publication-title: Eur J Nucl Med Mol Imaging |
| SSID | ssj0011501 |
| Score | 2.5510633 |
| Snippet | Cognitive impairment in patients with Alzheimer's disease (AD) is associated with reduction in hippocampal volume in magnetic resonance imaging (MRI). However,... |
| SourceID | pubmedcentral proquest pubmed wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1148 |
| SubjectTerms | Aged Alzheimer Disease - diagnosis Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer Disease - pathology Area Under Curve biomarker classification Cognition Cohort Studies Databases, Factual Early Diagnosis Female Glucose - metabolism hippocampus Hippocampus - diagnostic imaging Hippocampus - metabolism Hippocampus - pathology Humans image analysis Image Interpretation, Computer-Assisted - methods machine learning magnetic resonance imaging Magnetic Resonance Imaging - methods Male Middle Aged mild cognitive impairment Organ Size Positron-Emission Tomography Prognosis |
| Title | Early detection of Alzheimer's disease using MRI hippocampal texture |
| URI | https://api.istex.fr/ark:/67375/WNG-R7DG5XM8-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23091 https://www.ncbi.nlm.nih.gov/pubmed/26686837 https://www.proquest.com/docview/1763732400 https://www.proquest.com/docview/1764699762 https://www.proquest.com/docview/1776664902 https://pubmed.ncbi.nlm.nih.gov/PMC6867374 |
| Volume | 37 |
| WOSCitedRecordID | wos000370243600023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 issn: 1065-9471 databaseCode: WIN dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NCSFeYGx8BMZkJDR4iZYPx3a0p46xj4dWqAKtb5ad2DRiTau0RcBfv7OTBiYQQuItks-SHd_5fuc7_wzw2sQWgUBehHFBtSPVZqHCSCvkwmhW6CJiRvjHJvhoJCaT_MMWHG_uwrT8EP2Bm7MMv187A1d6efSTNHSqZ66K2d9cj6k3yqvLUZ9BQKDjgy10sWGOO_CGVShKjvqeCEjdv_z2J3T5e5Hkr-DVe5-zh_817h140IFOMmi15BFsmXoX9gY1Btyz7-SQ-DJQf76-C_eGXbZ9D049-zEpzcrXa9Vkbsng-sfUVDPTvFmSLrlDXO38ZzIcX5JptVigc8Qt5pq4kpJ1Yx7Dp7P3H99dhN2rC2GVoXMPjY0NpQmGKqLMcl0UqU6ipBRpyTXjjJUus5pkCnFAwYVK49Iy9IRGqTLWhmbpE9iu57V5BkRbJlKrIlsaTVlRKpQ1GbM2p4ZpmwRw6P-_XLTMGlI1X1yhGc_k1ehcjvnpeTYZCjkOYH-zQLKzsaWMcWvkjk8wCuBV34zW4VIeqjbztZfB-B8hV_I3GZwVo3mEMk_bNe8HhPBF4Bx4APyWNvQCjp37dktdTT1LN3bEmdAA3npt6Hu0PNGJRD2QXg_kxcnQfzz_d9EXcB-RG2uL4fZhe9WszUu4W3xdVcvmAO7wiTjw9nADkqYM5Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6aBgJeGGxcwgYYCQ1eouVqJxIvhbG1YolQNUTfLDuxacSaVmmLYL9-x04amEAIibdIPpbs-Fw--xx_BnipfI1AIC1cv4ikIdWmrsCdlssSJWkhC4-qxD42wfI8mUzSj1vwZnMXpuWH6A_cjGVYf20M3BxIH_1kDZ3KmSljNlfXb0QUkbu5TzLK-xwCQh273cIg66bogze8Ql5w1HdFSGr-5vc_4cvfyyR_ha82_pzs_N_I78HdDneSQaso92FL1buwN6hxzz37QQ6JrQS1R-y7cCvrEu57cGwJkEmpVrZkqyZzTQYXl1NVzVTzakm6_A4x5fNfSDYekWm1WGB8RC9zQUxVybpRD-DTyfvzd0O3e3jBrWKM767SvoqiAHcrSRmnsihCGXhBmYQlk5RRWprkahALhAIFS0Tol5piMFRClL5UURw-hO16XqvHQKSmSaiFp0slI1qUAmVVTLVOI0WlDhw4tAvAFy25BhfNV1NrxmL-OT_lY3Z8Gk-yhI8dONisEO_MbMl99I7MUAp6Drzom9FATNZD1Gq-tjIRTRF1BX-TwVmhCnko86hd9H5AiGASnANzgF1Th17AEHRfb6mrqSXqxo44k8iB11Yd-h4tVXTAUQ-41QM-fJvZjyf_Lvocbg_PszN-Nso_7MMdBHK0rY07gO1Vs1ZP4WbxbVUtm2fWLK4AMr8QLQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9NA028DNhgBAYYCQ1eouXDsROJl0LpVkGrqQLRNyuObRptTau0RcBfz9lJAxMIIfEWyWfJju_jZ9_5Z4DnOjQIBLLCDwsqLak283Pcafk81ZIVsgiYTt1jE3w8TqfT7GIHXm3vwjT8EN2Bm7UM56-tgeulMqc_WUNncm7LmO3V9RuUYeiz90mG4y6HgFDHbbcwyPoZ-uAtr1AQnXZdEZLav_n1T_jy9zLJX-Griz-D2_838juw3-JO0msU5S7s6OoADnsV7rnn38gJcZWg7oj9APZGbcL9EPqOAJkovXYlWxVZGNK7-j7T5VzXL1akze8QWz7_mYwmQzIrl0uMj-hlroitKtnU-h58HLz98Obcbx9e8MsE47uvTagpjXC3kqokk0URyyiIVBorLhlnTNnkapTkCAUKnuZxqAzDYKjzXIVS0yS-D7vVotIPgEjD0tjkgVFaUlaoHGV1wozJqGbSRB6cuAUQy4ZcQ-T1pa0144n4ND4TE94_S6ajVEw8ON6ukGjNbCVC9I7cUgoGHjzrmtFAbNYjr_Ri42QoyxB1RX-TwVkxmgUoc9QsejcgRDApzoF7wK-pQydgCbqvt1TlzBF1Y0ecCfXgpVOHrkdDFR0J1APh9ECcvx65j4f_LvoU9i76A_F-OH73CG4hjmNNadwx7K7rjX4MN4sv63JVP3FW8QOLoA-f |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+detection+of+Alzheimer%27s+disease+using+MRI+hippocampal+texture&rft.jtitle=Human+brain+mapping&rft.au=S%C3%B8rensen%2C+Lauge&rft.au=Igel%2C+Christian&rft.au=Liv+Hansen%2C+Naja&rft.au=Osler%2C+Merete&rft.date=2016-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=37&rft.issue=3&rft.spage=1148&rft.epage=1161&rft_id=info:doi/10.1002%2Fhbm.23091&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_R7DG5XM8_R |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |