Using fuzzy logic inference algorithm to recover molecular genetic regulatory networks

Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NAFIPS - 2004 Annual Meeting of the North American Fuzzy Information Processing Society Ročník 2; s. 990 - 995 Vol.2
Hlavní autori: Jing Yu, Wang, P.P.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Piscataway NJ IEEE 2004
Predmet:
ISBN:9780780383760, 0780383761
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation approach to test and improve the algorithm. Our fuzzy logic inference algorithm works reasonably well in recovering the underlying regulatory network.
ISBN:9780780383760
0780383761
DOI:10.1109/NAFIPS.2004.1337441