Using fuzzy logic inference algorithm to recover molecular genetic regulatory networks

Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NAFIPS - 2004 Annual Meeting of the North American Fuzzy Information Processing Society Jg. 2; S. 990 - 995 Vol.2
Hauptverfasser: Jing Yu, Wang, P.P.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: Piscataway NJ IEEE 2004
Schlagworte:
ISBN:9780780383760, 0780383761
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation approach to test and improve the algorithm. Our fuzzy logic inference algorithm works reasonably well in recovering the underlying regulatory network.
ISBN:9780780383760
0780383761
DOI:10.1109/NAFIPS.2004.1337441