Using fuzzy logic inference algorithm to recover molecular genetic regulatory networks
Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation a...
Uloženo v:
| Vydáno v: | NAFIPS - 2004 Annual Meeting of the North American Fuzzy Information Processing Society Ročník 2; s. 990 - 995 Vol.2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway NJ
IEEE
2004
|
| Témata: | |
| ISBN: | 9780780383760, 0780383761 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Network inference algorithms are powerful computational tools for identifying potential causal interactions among variables from observational data. Fuzzy logic has inherent capability of handling noisy data, so it becomes a tool we use to develop our inference algorithm. Here, we use a simulation approach to test and improve the algorithm. Our fuzzy logic inference algorithm works reasonably well in recovering the underlying regulatory network. |
|---|---|
| ISBN: | 9780780383760 0780383761 |
| DOI: | 10.1109/NAFIPS.2004.1337441 |

