Facial Expression Recognition based on Convolutional Neural Network with Sparse Representation

Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant intra-class variances and interclass similarities. In contrast, facial expression recognition in the wild is vital for human-computer interactions and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 8th International Conference on Systems and Informatics (ICSAI) s. 1 - 6
Hlavní autori: Liu, Xuan, Ma, Jiachen, Wang, Qiang
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 10.12.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant intra-class variances and interclass similarities. In contrast, facial expression recognition in the wild is vital for human-computer interactions and has numerous applications. Enhancing the discriminative features extraction ability is one approach to solving this issue. In this work, a sparse transform is used to improve a CNN's ability to extract features without adding to the network's computational load. We use a sparse representation layer that is built by the Haar wavelet transform or shearlet transform prior to the convolutional layers of a standard CNN. With the proposed sparse representation layers, we introduce a VGGNet and an AlexNet architecture and conduct experiments on the FER2013 dataset without the use of additional training data. The experimental results demonstrated that the wavelet transform's sparse representation layer can improve FER performance without increasing an excessive computational burden. We achieved testing accuracy of 73.25 percent on the FER2013 dataset using VGGNet paired with a sparse representation layer built inside a wavelet transform, which is among the best results for a single network.
AbstractList Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant intra-class variances and interclass similarities. In contrast, facial expression recognition in the wild is vital for human-computer interactions and has numerous applications. Enhancing the discriminative features extraction ability is one approach to solving this issue. In this work, a sparse transform is used to improve a CNN's ability to extract features without adding to the network's computational load. We use a sparse representation layer that is built by the Haar wavelet transform or shearlet transform prior to the convolutional layers of a standard CNN. With the proposed sparse representation layers, we introduce a VGGNet and an AlexNet architecture and conduct experiments on the FER2013 dataset without the use of additional training data. The experimental results demonstrated that the wavelet transform's sparse representation layer can improve FER performance without increasing an excessive computational burden. We achieved testing accuracy of 73.25 percent on the FER2013 dataset using VGGNet paired with a sparse representation layer built inside a wavelet transform, which is among the best results for a single network.
Author Liu, Xuan
Ma, Jiachen
Wang, Qiang
Author_xml – sequence: 1
  givenname: Xuan
  surname: Liu
  fullname: Liu, Xuan
  email: hitliuxuan@163.com
  organization: Harbin Institute of Technology,Department of Control Science and Engineering,Harbin,PR China
– sequence: 2
  givenname: Jiachen
  surname: Ma
  fullname: Ma, Jiachen
  email: hitmjc@163.com
  organization: Harbin Institute of Technology,Department of Control Science and Engineering,Weihai,PR China
– sequence: 3
  givenname: Qiang
  surname: Wang
  fullname: Wang, Qiang
  email: wangqiang@hit.edu.cn
  organization: Harbin Institute of Technology,Department of Control Science and Engineering,Harbin,PR China
BookMark eNo1j8tOwzAURI0EC1r4Axb-gQTf-JF4WUUtRKpAol1TOfENWAQ7clIKf0_CYzWj0ZmRZkHOffBICAWWAjB9W5W7VSVzAJ1mLMtSYIxJUcAZWYBSUuRCFPySPG9M40xH1599xGFwwdMnbMKLd-PsazOgpZMpg_8I3XEOJ_oBj_FHxlOIb_Tkxle6600ccGrPQ-hHM7NX5KI13YDXf7ok-816X94n28e7qlxtEyd0kUjINULLleIarChQq0YYC9pIaFmrZaPzos6ZBMOsMspazYXizEqR6RqAL8nN76xDxEMf3buJX4f_y_wbimtSHA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSAI57119.2022.10005481
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665474483
9781665474481
EndPage 6
ExternalDocumentID 10005481
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i498-5179e1f366391d48e96c4ad19a51f0f95c978b7051a0d6a6dd934630d5429b113
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:50 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i498-5179e1f366391d48e96c4ad19a51f0f95c978b7051a0d6a6dd934630d5429b113
PageCount 6
ParticipantIDs ieee_primary_10005481
PublicationCentury 2000
PublicationDate 2022-Dec.-10
PublicationDateYYYYMMDD 2022-12-10
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2022 8th International Conference on Systems and Informatics (ICSAI)
PublicationTitleAbbrev ICSAI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8163079
Snippet Facial Expression Recognition (FER) in the wild using Convolutional Neural Networks (CNNs) has been a challenge for years because of the significant...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Convolutional codes
convolutional neural network
Dictionaries
Face recognition
Facial expression recognition
Feature extraction
multilayer convolutional sparse coding
sparse representation
Training
Training data
Wavelet transforms
Title Facial Expression Recognition based on Convolutional Neural Network with Sparse Representation
URI https://ieeexplore.ieee.org/document/10005481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELZa1KFTW5Wqb2XoarCxE8djhUBlQagwMBU5vovEEhAF1J9fn0mKOnTo5JPl2NI50T3yfXeMvYjUebDOcJ0LxTUo4BbzkjvyfnsCgo9axGYTZjzO53M7qcnqkQuDiBF8hh0S4798WPkdpcq6MnoYRLQ-NcYcyFoNOkfY7qg_fR2lRkoioPR6nWb5r8Yp0W4ML_554iVrHxl4yeTHtlyxE6yu2cfQUYI7GXzV6NUqeW_wP0EmgwRJEMIe-_qNCqup_EYcIt47ocRrMl2HeBbD0-sj-6hqs9lwMOu_8bo_Al9qm3MqroWyVMFnsBJ0jjbz2oG0LpWlKG3qQ4RYmPDVuaBzlwFYpTMlgFpUFVKqG9aqVhXesqRAmYJy1mAIj5QSznqdgUOpvBIW_B1rk24W60MFjEWjlvs_5h_YOd0AwT6keGSt7WaHT-zM77fLz81zvLdvCTGbFQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MmuhJjRjf9uC10G67jx4NgUBEQoQDJ0m3M5twWQgC8efbll2NBw-eOmm2bTLdzTz2-2YIeeKxsaBNylTGJVMggWnMCma89xtxcD5qHppNpKNRNpvpcUVWD1wYRAzgM2x5MfzLh6Xd-lRZWwQPwxOtD2OlIrGna9X4HK7bg87keRCnQngKShS16gW_WqcEy9E7_eeZZ6T5w8Gj42_rck4OsLwg7z3jU9y0-1nhV0v6ViOAnOxNElAnuD121TvlnvYFOMIQEN_Up17pZOUiWnSrVz_8o7JJpr3utNNnVYcEtlA6Y768FopCOq9BC1AZ6sQqA0KbWBS80LF1MWKeuu_OOK2bBEBLlUgOvklVLoS8JI1yWeIVoTmKGKTRKboASUputFUJGBTSSq7BXpOm1818ta-BMa_VcvPH_CM57k9fh_PhYPRyS078bXgQiOB3pLFZb_GeHNndZvGxfgh3-AVIy55c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+8th+International+Conference+on+Systems+and+Informatics+%28ICSAI%29&rft.atitle=Facial+Expression+Recognition+based+on+Convolutional+Neural+Network+with+Sparse+Representation&rft.au=Liu%2C+Xuan&rft.au=Ma%2C+Jiachen&rft.au=Wang%2C+Qiang&rft.date=2022-12-10&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICSAI57119.2022.10005481&rft.externalDocID=10005481