Image Denoising using Autoencoders : Denoising noisy imgaes by removing noisy pixels/grains from natural images using Deep learning and autoencoders techniques

Denoising images is widely used in applications from critical medical systems to software based image enhancement in our cell phones. The natural noise is simulated by adding noise to an image in random pixels. Currently the denoising problem can be solved in either with greedy algorithm or by deep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2023 IEEE 8th International Conference for Convergence in Technology (I2CT) S. 1 - 6
Hauptverfasser: Kulkarni, Uday, Patil, Sachin, E, Vikas, Patil, Rahul, Kulkarni, Bodha, M, Meena S., Shanbhag, Akshay
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 07.04.2023
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Denoising images is widely used in applications from critical medical systems to software based image enhancement in our cell phones. The natural noise is simulated by adding noise to an image in random pixels. Currently the denoising problem can be solved in either with greedy algorithm or by deep learning techniques. In this paper we are discussing the usage of Autoencoders a deep learning technique to solve the problem of denoising. Autoencoders use down-sampling and up-sampling techniques to remove the unwanted noise from an image.By using Encoders we compress the image gradually to remove the tiny details like noise using convolution layers and ReLU as activation function. The compressed images are fed to Decoders, the decoder up-samples the image bit-by-bit till the image reaches the original resolution, while up-sampling the tiny details like human hair or tiny speckles on face are restored without trying to bring back the noisy pixels. To train the proposed model we used FFHQ-Face dataset which consists of 70 thousand images of 128x128 resolution, each image is a face of and unique individual. The output of the neural network is a denoised image with PSNR of above 35, which maximum achieved compared to other pre-trained models.
AbstractList Denoising images is widely used in applications from critical medical systems to software based image enhancement in our cell phones. The natural noise is simulated by adding noise to an image in random pixels. Currently the denoising problem can be solved in either with greedy algorithm or by deep learning techniques. In this paper we are discussing the usage of Autoencoders a deep learning technique to solve the problem of denoising. Autoencoders use down-sampling and up-sampling techniques to remove the unwanted noise from an image.By using Encoders we compress the image gradually to remove the tiny details like noise using convolution layers and ReLU as activation function. The compressed images are fed to Decoders, the decoder up-samples the image bit-by-bit till the image reaches the original resolution, while up-sampling the tiny details like human hair or tiny speckles on face are restored without trying to bring back the noisy pixels. To train the proposed model we used FFHQ-Face dataset which consists of 70 thousand images of 128x128 resolution, each image is a face of and unique individual. The output of the neural network is a denoised image with PSNR of above 35, which maximum achieved compared to other pre-trained models.
Author Kulkarni, Uday
Patil, Sachin
Shanbhag, Akshay
Patil, Rahul
M, Meena S.
Kulkarni, Bodha
E, Vikas
Author_xml – sequence: 1
  givenname: Uday
  surname: Kulkarni
  fullname: Kulkarni, Uday
  email: uday_kulkarni@kletech.ac.in
  organization: KLE Technological University,School of Computer Science,Hubli,India
– sequence: 2
  givenname: Sachin
  surname: Patil
  fullname: Patil, Sachin
  email: sachin.cs2002p@gmail.com
  organization: KLE Technological University,School of Computer Science,Hubli,India
– sequence: 3
  givenname: Vikas
  surname: E
  fullname: E, Vikas
  email: biougevikas0@zohomail.com
  organization: KLE Technological University,School of Computer Science,Hubli,India
– sequence: 4
  givenname: Rahul
  surname: Patil
  fullname: Patil, Rahul
  email: rahulrpatil200215@gmail.com
  organization: KLE Technological University,School of Computer Science,Hubli,India
– sequence: 5
  givenname: Bodha
  surname: Kulkarni
  fullname: Kulkarni, Bodha
  email: bodhakulkarni2247@gmail.com
  organization: KLE Technological University,School of Computer Science,Hubli,India
– sequence: 6
  givenname: Meena S.
  surname: M
  fullname: M, Meena S.
  email: msm@kletech.ac.in
  organization: KLE Technological University,School of Computer Science,Hubli,India
– sequence: 7
  givenname: Akshay
  surname: Shanbhag
  fullname: Shanbhag, Akshay
  email: akshayshan2001@gmail.com
  organization: KLE Technological University,School of Computer Science,Hubli,India
BookMark eNpNUEtOwzAUNBIsoPQGSPgCaf2JE5td1fKpVIlN9tVL8hwsJU6wG0RPw1VpoYhuZjQavZnRuyGXvvdIyD1nM86Zma_FslC5zvhMMCFnnHGRSS0uyNTkRkvFpJRGq2vyte6gQbpC37vofEPHH1yMux591dcYIn04s4-8p65rACMt9zRg13_8G4P7xDbOmwDOR2pD31EPuzFAe7g5FMVT_gpxoC1C8EcFvqZw3rjD6s279xHjLbmy0EacnnhCiqfHYvmSbF6f18vFJnGpyRJhtEZmUpMLJXPLlK5LozNVZ9qkDDhakYtScqtAgWUpVxLRgiqrSqO0Vk7I3W-sQ8TtEA5jw3779zb5Db2ga6A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/I2CT57861.2023.10126382
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350333985
9798350334012
EndPage 6
ExternalDocumentID 10126382
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i496-2988e094972537f058db9865d68940a1ef272b31f5a5af04153eefa5bcc8e3ff3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:31 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i496-2988e094972537f058db9865d68940a1ef272b31f5a5af04153eefa5bcc8e3ff3
PageCount 6
ParticipantIDs ieee_primary_10126382
PublicationCentury 2000
PublicationDate 2023-April-7
PublicationDateYYYYMMDD 2023-04-07
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April-7
  day: 07
PublicationDecade 2020
PublicationTitle 2023 IEEE 8th International Conference for Convergence in Technology (I2CT)
PublicationTitleAbbrev I2CT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8281358
Snippet Denoising images is widely used in applications from critical medical systems to software based image enhancement in our cell phones. The natural noise is...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autoencoders
Convolution
Convolution(keywords)
Deep learning
Image coding
Image resolution
MSE
Neural networks
Noise reduction
PSNR
ReLU
SGD
Sigmoid
Software
Title Image Denoising using Autoencoders : Denoising noisy imgaes by removing noisy pixels/grains from natural images using Deep learning and autoencoders techniques
URI https://ieeexplore.ieee.org/document/10126382
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sCaNomd2GZDLRVdqg4dulW2c64i0aRqGkR_DX8V201LGRhY4shOcpLt5HzOvfcQegIK2ohUBdQQD8lRAU9UFGjGQwGUZnaN5MUm2GjEp1MxbsDqHgsDAD75DDru1P_Lz0pdu62yruOisvPFfnGPGUu3YK0mZysKRXcY9yZ2AqYu7ItJZ3f1L90U7zYGZ_80eI7aPwA8PN67lgt0BMUl-hou7MuP-1CUuYvwce2PL_W6dGyULiMZPx80u3KD88VcQoXVBq9g4bcPmoZl_mn9YnfuNCIq7GAm2LN8ynd7jzVUNc_vAyxxIy4xx7LIsDy0uCeBrdpoMnid9N6CRl8hyKlIg1hwDja6EyxOCDNhwjMleJpkKRc0lBGYmMWKRCaRiTQOyk8AjEyU1hyIMeQKtYqygGuEqcgSGmnBCNM2YJMyNEYB0VRJGwGn4ga1XefOllsGjdmuX2__qL9Dp24IfYYMu0et9aqGB3SiP9Z5tXr04_4NzoC0GQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4MmuhJjRh_24PXwbZ2W-vNgAQiEg4cuJG2eyVLZBDGjPw1_qu2dSAePHhZl3XbS9q3vX3d-96H0ANQUJrH0qOaOEqO9FgkA08lzOdAaWq-kZzYRDIYsPGYDyuyuuPCAIBLPoOG3XX_8tO5Ku1SWdPWojL-Yt64-1Y6q6JrVVlbgc-bvbA1Mi4YW-AXksbm_F_KKS5wdI7_afIE1X8oeHi4DS6naA_yM_TZm5nHH7chn2cW4-PSbZ_K1dzWo7Q5yfhxp9u2a5zNpgIKLNd4CTO3gFB1LLIPExmbU6sSUWBLNMGuzqd4M9cYQ0V1_zbAAlfyElMs8hSLXYvbMrBFHY06z6NW16sUFryM8tgLOWNg8B1Pwogk2o9YKjmLozRmnPoiAB0moSSBjkQktCXzEwAtIqkUA6I1OUe1fJ7DBcKUpxENFE9IogxkE8LXWgJRVAqDgWN-iep2cCeL7xoak824Xv1x_B4ddkev_Um_N3i5Rkd2Ol2-THKDaqtlCbfoQL2vsmJ553zgC1XZt2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+8th+International+Conference+for+Convergence+in+Technology+%28I2CT%29&rft.atitle=Image+Denoising+using+Autoencoders+%3A+Denoising+noisy+imgaes+by+removing+noisy+pixels%2Fgrains+from+natural+images+using+Deep+learning+and+autoencoders+techniques&rft.au=Kulkarni%2C+Uday&rft.au=Patil%2C+Sachin&rft.au=E%2C+Vikas&rft.au=Patil%2C+Rahul&rft.date=2023-04-07&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FI2CT57861.2023.10126382&rft.externalDocID=10126382