Stochastic Approach to realistic rendering in computer graphics for Virtual Reality (VR)

In Virtual Reality, it is important to make the rendering of images displayed on an HMD headset as realistic as possible. In this case, it is a question of taking into account the multiple reflections, refractions and diffusions using stochastic methods (Monte Carlo, Gaussian processes, etc.) or AI...

Full description

Saved in:
Bibliographic Details
Published in:2023 International Conference on Networking and Advanced Systems (ICNAS) p. 1
Main Author: Bouatouch, Kadi
Format: Conference Proceeding
Language:English
Published: IEEE 21.10.2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In Virtual Reality, it is important to make the rendering of images displayed on an HMD headset as realistic as possible. In this case, it is a question of taking into account the multiple reflections, refractions and diffusions using stochastic methods (Monte Carlo, Gaussian processes, etc.) or AI (CNN neural networks). These methods can be used in other fields such as vision, crowd simulation, etc. This Keynote Lecture begins by introducing the different processing necessary for obtaining a computer-generated image such as: geometric modeling, camera parameters, color, photometric quantities, etc. Then it presents in detail the various stochastic rendering methods allowing the generation of synthetic images with a high level of realism. Among these methods we can cite: the Monte Carlo method, Bayesian Monte Carlo, Metropolis, spectral Analysis of Quadrature Rules and Fourier Truncation-based Methods Applied to the Shading Integral, etc. This lecture will be illustrated with realistic images generated with different rendering methods.
AbstractList In Virtual Reality, it is important to make the rendering of images displayed on an HMD headset as realistic as possible. In this case, it is a question of taking into account the multiple reflections, refractions and diffusions using stochastic methods (Monte Carlo, Gaussian processes, etc.) or AI (CNN neural networks). These methods can be used in other fields such as vision, crowd simulation, etc. This Keynote Lecture begins by introducing the different processing necessary for obtaining a computer-generated image such as: geometric modeling, camera parameters, color, photometric quantities, etc. Then it presents in detail the various stochastic rendering methods allowing the generation of synthetic images with a high level of realism. Among these methods we can cite: the Monte Carlo method, Bayesian Monte Carlo, Metropolis, spectral Analysis of Quadrature Rules and Fourier Truncation-based Methods Applied to the Shading Integral, etc. This lecture will be illustrated with realistic images generated with different rendering methods.
Author Bouatouch, Kadi
Author_xml – sequence: 1
  givenname: Kadi
  surname: Bouatouch
  fullname: Bouatouch, Kadi
  email: kadi.bouatouch@irisa.fr
  organization: IRISA, University of Rennes 1, PERCEPT group
BookMark eNo1j71qwzAURlVohzbNG3TQ2A5xr3QtWxqNaZtAaCEJoVuQ5etY4NhGVoa8fenf9MGBc-C7Y9f90BNjXEAiBJjnVflebJXRRiYSJCYCEEGJ9IrNTW40KkBhRA637HMbB9faKXrHi3EMg3UtjwMPZDv_QwP1NQXfH7nvuRtO4zlS4Mdgx9a7iTdD4Hsf4tl2fPMtxQt_3G-e7tlNY7uJ5n87Y7vXl125XKw_3lZlsV741MiFqGqqjQDd6MpkWoKrG1I1mFwpKSl1kFWNRatQkshEZiuNAA2mWjnEvMYZe_jNeiI6jMGfbLgc_v_iF8dcUDs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNAS59892.2023.10330514
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350319170
EndPage 1
ExternalDocumentID 10330514
Genre tutorial
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i492-1bded9108f8b96820cdfe5d0975522e4c06bfa3a532e1616ab8300f3485c337d3
IEDL.DBID RIE
IngestDate Wed May 01 11:48:53 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i492-1bded9108f8b96820cdfe5d0975522e4c06bfa3a532e1616ab8300f3485c337d3
PageCount 1
ParticipantIDs ieee_primary_10330514
PublicationCentury 2000
PublicationDate 2023-Oct.-21
PublicationDateYYYYMMDD 2023-10-21
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-21
  day: 21
PublicationDecade 2020
PublicationTitle 2023 International Conference on Networking and Advanced Systems (ICNAS)
PublicationTitleAbbrev ICNAS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.848096
Snippet In Virtual Reality, it is important to make the rendering of images displayed on an HMD headset as realistic as possible. In this case, it is a question of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Geometric modeling
Headphones
Image color analysis
Monte Carlo methods
Neural networks
Resists
Virtual reality
Title Stochastic Approach to realistic rendering in computer graphics for Virtual Reality (VR)
URI https://ieeexplore.ieee.org/document/10330514
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFA1aXLhSseKbLFzoYmo6eU2WpVgUpJS2lO7K5CbBAZmR6dTvN0mnigsX7kJICNyQ3JPHOQehu7yfU2DaJcb5LZA5o5KMcUiAKUKVdUJHz8jFqxyPs-VSTVqyeuTCWGvj5zPbC8X4lm8q2ISrMr_C_embB9vqfSnFlqy1-51D1OPLcDyYcZWpQLBKaW_X_JdxSswbo6N_jniMuj8MPDz5zi0naM-Wp2g5ayp4y4OyMh60WuC4qbDHfe9RbxnX0RjO98BFiaE1bMBRlLqANfYAFS-KOlBG8NRGBI7vF9OHLpqPnubD56R1RkgKptKkr401Ps9nLtNK-BwOxlluiJLcwynLgAjtcppzmlqP6ESuM0qIoyzjQKk09Ax1yqq05wiDUIxLECbnzi9fomkKQjPhGNVGOrhA3RCV1cdW-2K1C8jlH_VX6DDEPuzuaf8adZp6Y2_QAXw2xbq-jTP2BduKmTo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA6igp5UnPhtDh700Nk1H22OYzg2nGVsY-w2mjcJFqSVrvP3m2Sd4sGDtxB4CeQleZ98PM-D0H3WyQhQaQJl7BZIjRJBQhkEQEVIhDZces_I-ShO02SxEOOGrO65MFpr__lMt13Tv-WrEtbuqsyucHv6Zs62es9ZZ7ENXWv7PycUT8Ne2p0ykQhHsYpIexvwyzrFV47-0T_HPEatHw4eHn9XlxO0o4tTtJjWJbxlTlsZdxs1cFyX2CK_d6-4jCtvDWcjcF5gaCwbsJelzmGFLUTF87xypBE80R6D44f55LGFZv3nWW8QNN4IQU5FFHSk0spW-sQkUnBbxUEZzVQoYmYBlaYQcmkykjESaYvpeCYTEoaG0IQBIbEiZ2i3KAt9jjBwQVkMXGXM2AUcShIBl5QbSqSKDVyglpuV5cdG_WK5nZDLP_rv0MFg9jpajobpyxU6dHlwe33UuUa7dbXWN2gfPut8Vd367H0BCvachQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networking+and+Advanced+Systems+%28ICNAS%29&rft.atitle=Stochastic+Approach+to+realistic+rendering+in+computer+graphics+for+Virtual+Reality+%28VR%29&rft.au=Bouatouch%2C+Kadi&rft.date=2023-10-21&rft.pub=IEEE&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FICNAS59892.2023.10330514&rft.externalDocID=10330514