Academic Performance Predicting Model based on Machine Learning and Keller's Motivation Measure

This article investigates a model for predicting the academic performance of university students using Machine Learning techniques based on the level of motivation achieved with the implementation of the ARCS instructional model and the use of a technological tool called Arduino Science Journal used...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings - International Conference of the Chilean Computer Science Society s. 1 - 7
Hlavní autoři: Laurens, Luis, Garcia, Ruber Hernandez
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 21.11.2022
Témata:
ISSN:2691-0632
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article investigates a model for predicting the academic performance of university students using Machine Learning techniques based on the level of motivation achieved with the implementation of the ARCS instructional model and the use of a technological tool called Arduino Science Journal used for learning Topics related to the kinematics of bodies. Analready validated methodology focused on motivation was implemented,which was quantified through the Instructional Material Motivational Survey (IMMS) instrument, which was applied toa group of 36 students of the Kinematics and Dynamics subject from a Civil Industrial Engineering career. Machine learning techniques were used to predict academic performance based on regression algorithms. The results show that Confidence was the IMMS dimension with the best prediction results. At the sametime, the Support Vector Regression algorithm achieves the lowest mean absolute error in the estimated academic performance. This research provides a prediction model of academic performance through emotional variables of the students, showing the potential to act as an early warning system, helping teachers to manage students' academic performance, and allowing students to self assess their performance.
AbstractList This article investigates a model for predicting the academic performance of university students using Machine Learning techniques based on the level of motivation achieved with the implementation of the ARCS instructional model and the use of a technological tool called Arduino Science Journal used for learning Topics related to the kinematics of bodies. Analready validated methodology focused on motivation was implemented,which was quantified through the Instructional Material Motivational Survey (IMMS) instrument, which was applied toa group of 36 students of the Kinematics and Dynamics subject from a Civil Industrial Engineering career. Machine learning techniques were used to predict academic performance based on regression algorithms. The results show that Confidence was the IMMS dimension with the best prediction results. At the sametime, the Support Vector Regression algorithm achieves the lowest mean absolute error in the estimated academic performance. This research provides a prediction model of academic performance through emotional variables of the students, showing the potential to act as an early warning system, helping teachers to manage students' academic performance, and allowing students to self assess their performance.
Author Garcia, Ruber Hernandez
Laurens, Luis
Author_xml – sequence: 1
  givenname: Luis
  orcidid: 0000-0002-2140-6275
  surname: Laurens
  fullname: Laurens, Luis
  organization: Universidad Católica del Maule,Facultad de Cs. de la Ingeniería,Talca,Chile
– sequence: 2
  givenname: Ruber Hernandez
  orcidid: 0000-0002-9311-1193
  surname: Garcia
  fullname: Garcia, Ruber Hernandez
  organization: Universidad Católica del Maule,Centro de Investigación de Estudios Avanzados del Maule,Talca,Chile
BookMark eNo1kE1LAzEQhqMo2Nb-A8HcPLUmk49tjmWxKm6xYO9lNpnVyDYr2Sr4792izmUOz8PLzDtmZ6lLxNi1FHMphbt9KcvSFNrqOQiAuRTDwAJO2NQVC2mt0cYO-JSNwDo5E1bBBRv3_fugCXByxHZLj4H20fMN5abLe0ye-CZTiP4Q0ytfd4FaXmNPgXeJr9G_xUS8IszpyDEF_kRtS_mmH-RD_MJDPIqE_WemS3beYNvT9G9P2HZ1ty0fZtXz_WO5rGZRD4dZLGpfLArrFBhslDOoDYGujWzI2gZUCGDqxjtjcPjUOUFGoUZSugCyasKufmMjEe0-ctxj_t7996F-AOqAVoM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCCC57464.2022.10000282
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781665456746
1665456744
EISSN 2691-0632
EndPage 7
ExternalDocumentID 10000282
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i491-6a7bc78769325af395a45e24b51fe66f23dd25bfc955a022990e53a4ae3472e63
IEDL.DBID RIE
IngestDate Wed Aug 27 02:22:18 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i491-6a7bc78769325af395a45e24b51fe66f23dd25bfc955a022990e53a4ae3472e63
ORCID 0000-0002-9311-1193
0000-0002-2140-6275
PageCount 7
ParticipantIDs ieee_primary_10000282
PublicationCentury 2000
PublicationDate 2022-Nov.-21
PublicationDateYYYYMMDD 2022-11-21
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-21
  day: 21
PublicationDecade 2020
PublicationTitle Proceedings - International Conference of the Chilean Computer Science Society
PublicationTitleAbbrev SCCC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020291
Score 2.2011144
Snippet This article investigates a model for predicting the academic performance of university students using Machine Learning techniques based on the level of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Academic performance
ARCS
IMMS
Instruments
Kinematics
Machine learning
Predicting model
Prediction algorithms
Predictive models
Python
Support vector machines
Title Academic Performance Predicting Model based on Machine Learning and Keller's Motivation Measure
URI https://ieeexplore.ieee.org/document/10000282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwEBZN6NApfaT0jYZCJyeWZEnWbBoKbUKgGbIFWTqVQHFKHv39lWQ7oUOHbsLoMJwQd_fp--4QerRcG8dkmgSlTJIRJxIlS574VD-3OnWO2dhn9k1OJvl8rqaNWD1qYQAgks9gEJbxLd-uzC5AZcOIRfsaoYM6UoparLWvrlKqSEPgIqkavhdFwWUmAm5C6aA1_TVEJcaQUe-ffz9F_YMaD0_3ceYMHUF1jnrtOAbc3M4LtGi57nh6UAN4y_AUE8jNOMw9-8Qhblm8qvA48igBNy1WP7CuLH4NQP76aeM3t4PP8LjGEftoNnqeFS9JMz8hWWaKJELL0vj7KHyKxrVjiuuMA81KThwI4SizlvLSGcW59j7ycQk405kGlkkKgl2ibrWq4AphYUIdkytiqc-vlFY2FwCGaOetmUmvUT_4a_FVd8hYtK66-eP7LToJpxI0fZTcoe52vYN7dGy-t8vN-iGe6w_3NaMl
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBVtWmhP6ZLSvToUenJirbbOpiElC4HmkJuRtZRAsUuWfn8lxU7ooYfehNFgGCFm5um9GQCeNZPKkiSOvFImosjySCQFi1yqn2oZW0t06DM7SiaTdD4X01qsHrQwxphAPjNdvwxv-bpSGw-V9QIW7WqEQ3DEKMXxVq61q69iLFBN4UKx6L1nWcYSyj1ygnG3Mf41RiVEkX77n_8_A529Hg9Od5HmHByY8gK0m4EMsL6flyBv2O5wutcDOEv_GOPpzdBPPvuEPnJpWJVwHJiUBtZNVj-gLDUceih_-bJym5vRZ3C8RRI7YNZ_nWWDqJ6gEC2oQBGXSaHcjeQuSWPSEsEkZQbTgiFrOLeYaI1ZYZVgTDofuchkGJFUGkITbDi5Aq2yKs01gFz5SiYVSGOXYQkpdMqNUUhaZ01UfAM63l_517ZHRt646vaP70_gZDAbj_LR22R4B079CXmFH0b3oLVebswDOFbf68Vq-RjO-AejOKZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+International+Conference+of+the+Chilean+Computer+Science+Society&rft.atitle=Academic+Performance+Predicting+Model+based+on+Machine+Learning+and+Keller%27s+Motivation+Measure&rft.au=Laurens%2C+Luis&rft.au=Garcia%2C+Ruber+Hernandez&rft.date=2022-11-21&rft.pub=IEEE&rft.eissn=2691-0632&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FSCCC57464.2022.10000282&rft.externalDocID=10000282