Toxic Voice Classification Implementing CNN-LSTM & Employing Supervised Machine Learning Algorithms Through Explainable AI-SHAP
Data innovation has advanced rapidly in recent years, and the network media has undergone several problematic changes. Places where consumers can express their thoughts through messages, photos, and notes, such as Facebook, Twitter, and Instagram, are gaining popularity. Unfortunately, it has become...
Uloženo v:
| Vydáno v: | 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
13.09.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data innovation has advanced rapidly in recent years, and the network media has undergone several problematic changes. Places where consumers can express their thoughts through messages, photos, and notes, such as Facebook, Twitter, and Instagram, are gaining popularity. Unfortunately, it has become a place of toxic, insults, cyberbullying, and mysterious dangers. There is a lot of research here, but none has found a sufficient level of accuracy. This paper proposes a Convolutional Neural Network with Long Short-Term Memory (CNN-LSTM) and Natural Language Processing (NLP) fusion strategy that characterizes malicious and non-malicious remarks with a word embedding technique at an initial stage. And this model can categorize any voice data into six levels of classification. Furthermore, the processed dataset is applied to two traditional Machine Learning Algorithms (Random Forest and Extra Tress Algorithm) with an estimator (Logistic Regression) and interprets these algorithms with an Explainable AI (XAI)-SHAP. In the final step, two classifiers and the estimator are ensembled with Stacking Classifier, which is better than any previous activity. |
|---|---|
| AbstractList | Data innovation has advanced rapidly in recent years, and the network media has undergone several problematic changes. Places where consumers can express their thoughts through messages, photos, and notes, such as Facebook, Twitter, and Instagram, are gaining popularity. Unfortunately, it has become a place of toxic, insults, cyberbullying, and mysterious dangers. There is a lot of research here, but none has found a sufficient level of accuracy. This paper proposes a Convolutional Neural Network with Long Short-Term Memory (CNN-LSTM) and Natural Language Processing (NLP) fusion strategy that characterizes malicious and non-malicious remarks with a word embedding technique at an initial stage. And this model can categorize any voice data into six levels of classification. Furthermore, the processed dataset is applied to two traditional Machine Learning Algorithms (Random Forest and Extra Tress Algorithm) with an estimator (Logistic Regression) and interprets these algorithms with an Explainable AI (XAI)-SHAP. In the final step, two classifiers and the estimator are ensembled with Stacking Classifier, which is better than any previous activity. |
| Author | Rabiul Alam, Md. Golam Shakil, Mahmudul Hasan |
| Author_xml | – sequence: 1 givenname: Mahmudul Hasan surname: Shakil fullname: Shakil, Mahmudul Hasan email: mahmudul.hasan.shakil@g.bracu.ac.bd organization: BRAC University,Department of Computer Science and Engineering,Dhaka,Bangladesh – sequence: 2 givenname: Md. Golam surname: Rabiul Alam fullname: Rabiul Alam, Md. Golam email: rabiul.alam@bracu.ac.bd organization: BRAC University,Department of Computer Science and Engineering,Dhaka,Bangladesh |
| BookMark | eNotkEFrg0AUhLfQHpq0v6CX7aU3rbvr6noUsY1g0kKk1_DcPOOC7oomJTn1ryehOc3wDQzMzMi9dRYJeWWBz1iQvBdFlhZ5JSUTic8Dzv0kEVEcyzsyY1Ekw0iJWD2Sv8odjaY_zmikWQfTZBqjYW-cpUU_dNij3Ru7o9lq5ZXraknfaH7h7nSF68OA46-ZcEuXoFtjkZYIo71mabdzo9m3_USrdnSHXUvz49CBsVB3SNPCWy_S7yfy0EA34fNN56T6yKts4ZVfn5cJpWdClXhNrGoACGotIJQ6gAYuDrWsuWBchQJ4UDcRxJhstZByy7GOdcQbxUBppcScvPzXGkTcDKPpYTxtbpeIMwf8XqE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IICAIET55139.2022.9936775 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665468378 9781665468374 |
| EndPage | 6 |
| ExternalDocumentID | 9936775 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i489-f78baaa0bc3a45c0afac3aec5b2312843a20bf6a7e9dc355d2eb7c62f81a8c883 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jan 18 11:14:14 EST 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i489-f78baaa0bc3a45c0afac3aec5b2312843a20bf6a7e9dc355d2eb7c62f81a8c883 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9936775 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept.-13 |
| PublicationDateYYYYMMDD | 2022-09-13 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept.-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) |
| PublicationTitleAbbrev | IICAIET |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8067328 |
| Snippet | Data innovation has advanced rapidly in recent years, and the network media has undergone several problematic changes. Places where consumers can express their... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Classification algorithms CNN-LSTM Convolutional neural networks Explainable AI Extra Trees Algorithm Logistic Regression Machine learning algorithms Media NLP Random Forest SHAP Stacking Technological innovation Tokenization Word Embedding |
| Title | Toxic Voice Classification Implementing CNN-LSTM & Employing Supervised Machine Learning Algorithms Through Explainable AI-SHAP |
| URI | https://ieeexplore.ieee.org/document/9936775 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP_YhognlU18E0E82a3vpMcyJitsZbAydhtJmsyBtmMP8ea_bpKWieDFSwlpofCF9vel_T0AHm3uiSgkvuVgQbUkB1sswp462J6UQZBL49M9G-E0JfN5NGnA80ELI4Qw5DPR1UPzLz8v-V5_KuspLA0xDprQxBhXWq1jeKhtM3tJ0o-TQaYTS7QCxXW79fW_glMMbryc_u-OZ9D5EeChyQFazqEhijZ8ZeXniqNZqZ5tZMIsNc3HVBYZk1_D_CmWqJ-m1miajdETqgJ99eR0v9avha3I0dgQKAWqvVWXKH5blpvV7vV9i7Iqtwdpbl4trEJxYk2H8aQD2csg6w-tOj_BWvkksiQmjFJqM-5RP-A2lVSNBA-Y6ukUKnnUtZkMKRZRzlXbkbuCYR66kjiUcEK8C2gVZSEuAeltI2YUqzPSDyKXqcZF4ZjqZfTu2rGvoK1rt1hXDhmLumzXf0_fwIleHs26cLxbaO02e3EHR_xjt9pu7s2yfgNLXqXR |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwHA5zinpS2cS3EcST3fpOeixjY8WuDFbGbiNJk1nQduwh3vzXTdIyEbx4KSGlFH6h_X5pvwcAjyZzeOBj17AQJ0qSgwwaIEceTEcIz8uE9umexihJ8GwWjBvgeaeF4Zxr8hnvqKH-l5-VbKs-lXUllvoIeXtg33Nd26rUWofgoTbO7EZRL4z6qcosURoU2-7UV_yKTtHIMTj53z1PQftHggfHO3A5Aw1etMBXWn7mDE5L-XRDHWepiD66tlDb_GruT7GAvSQx4kk6gk-wivRVk5PtUr0Y1jyDI02h5LB2V13A8G1RrvLN6_saplVyD1TsvFpaBcPImAzDcRukg37aGxp1goKRuzgwBMKUEGJS5hDXYyYRRI4486js6iQuOcQ2qfAJ4kHGZOOR2Zwi5tsCWwQzjJ1z0CzKgl8AqDaOiBIkzwjXC2wqWxeJZLKbUftry7wELVW7-bLyyJjXZbv6e_oeHA3TUTyPo-TlGhyrpVIcDMu5Ac3NastvwQH72OTr1Z1e4m8WQKkY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Artificial+Intelligence+in+Engineering+and+Technology+%28IICAIET%29&rft.atitle=Toxic+Voice+Classification+Implementing+CNN-LSTM+%26+Employing+Supervised+Machine+Learning+Algorithms+Through+Explainable+AI-SHAP&rft.au=Shakil%2C+Mahmudul+Hasan&rft.au=Rabiul+Alam%2C+Md.+Golam&rft.date=2022-09-13&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIICAIET55139.2022.9936775&rft.externalDocID=9936775 |