Accurate Changing Point Detection for Mean Filtering

It is often desirable to find the underlying trends in time series data. This is a well known signal processing problem that has many applications in areas such as financial data analysis, climatology, biological and medical sciences. Mean filtering finds a piece-wise constant trend in the data whil...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE signal processing letters Ročník 23; číslo 2; s. 297 - 301
Hlavní autori: Ottersten, Johan, Wahlberg, Bo, Rojas, Cristian R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1070-9908, 1558-2361
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is often desirable to find the underlying trends in time series data. This is a well known signal processing problem that has many applications in areas such as financial data analysis, climatology, biological and medical sciences. Mean filtering finds a piece-wise constant trend in the data while trend filtering finds a piece-wise linear trend. When the signal is noisy, the main difficulty is finding the changing points in the data that mark the transition points when the mean or the trend changes. Previously proposed methods based on ℓ 1 filtering suffer from the occurrence of false changing points in the estimate. This is known as the stair-case effect. The main contribution in this paper is incorporating a technique to remove these false changing points to a fast mean filtering algorithm, referred to as the taut-string method, resulting in an efficient procedure with accurate change point detection and thus the removal of the stair-case effect.
AbstractList It is often desirable to find the underlying trends in time series data. This is a well known signal processing problem that has many applications in areas such as financial data analysis, climatology, biological and medical sciences. Mean filtering finds a piece-wise constant trend in the data while trend filtering finds a piece-wise linear trend. When the signal is noisy, the main difficulty is finding the changing points in the data that mark the transition points when the mean or the trend changes. Previously proposed methods based on ℓ 1 filtering suffer from the occurrence of false changing points in the estimate. This is known as the stair-case effect. The main contribution in this paper is incorporating a technique to remove these false changing points to a fast mean filtering algorithm, referred to as the taut-string method, resulting in an efficient procedure with accurate change point detection and thus the removal of the stair-case effect.
It is often desirable to find the underlying trends in time series data. This is a well known signal processing problem that has many applications in areas such as financial data analysis, climatology, biological and medical sciences. Mean filtering finds a piece-wise constant trend in the data while trend filtering finds a piece-wise linear trend. When the signal is noisy, the main difficulty is finding the changing points in the data that mark the transition points when the mean or the trend changes. Previously proposed methods based on [Formula Omitted] filtering suffer from the occurrence of false changing points in the estimate. This is known as the stair-case effect. The main contribution in this paper is incorporating a technique to remove these false changing points to a fast mean filtering algorithm, referred to as the taut-string method, resulting in an efficient procedure with accurate change point detection and thus the removal of the stair-case effect.
Author Rojas, Cristian R.
Ottersten, Johan
Wahlberg, Bo
Author_xml – sequence: 1
  givenname: Johan
  surname: Ottersten
  fullname: Ottersten, Johan
  organization: Sch. of Electr. Eng., KTH R. Inst. of Technol., Stockholm, Sweden
– sequence: 2
  givenname: Bo
  surname: Wahlberg
  fullname: Wahlberg, Bo
  organization: Sch. of Electr. Eng., KTH R. Inst. of Technol., Stockholm, Sweden
– sequence: 3
  givenname: Cristian R.
  surname: Rojas
  fullname: Rojas, Cristian R.
  organization: Sch. of Electr. Eng., KTH R. Inst. of Technol., Stockholm, Sweden
BookMark eNotj01Lw0AURQepYFvdC24CrhPfZL6XJVoVIhbsPoyTlzqlTupkuvDfO1BX9y4O93AXZBbGgITcUqgoBfPQfmyqGqisakGVBHFB5lQIXdZM0lnuoKA0BvQVWUzTHgA01WJO-Mq5U7QJi-bLhp0Pu2Iz-pCKR0zokh9DMYyxeEMbirU_JIwZuSaXgz1MePOfS7JdP22bl7J9f35tVm3puTYlGiezxCnjesuzXzLoe_wchKKKc4cChOVYO-56TiVyJyyyeqgHwKF3yJbk_jx7jOPPCafU7cdTDNnY5YtUgjbSZOruTHlE7I7Rf9v42ymmtNaM_QFbVlFp
CODEN ISPLEM
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2016
DBID 97E
RIA
RIE
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2016.2517605
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 301
ExternalDocumentID 3939223621
7378883
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-i489-e9c6818c79cda4070630ddebf571744ce505a4e2c4cd416e4c5ae32f2f0efdce3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Sun Jun 29 13:15:57 EDT 2025
Tue Aug 26 16:43:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords stair-case effect
taut-string algorithm
{\ell _1} mean filtering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i489-e9c6818c79cda4070630ddebf571744ce505a4e2c4cd416e4c5ae32f2f0efdce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1761608969
PQPubID 75747
PageCount 5
ParticipantIDs ieee_primary_7378883
proquest_journals_1761608969
PublicationCentury 2000
PublicationDate 2016-Feb.
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0008185
Score 2.1297243
Snippet It is often desirable to find the underlying trends in time series data. This is a well known signal processing problem that has many applications in areas...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 297
SubjectTerms Data models
Difference equations
l1 mean filtering
Noise measurement
Signal processing
Signal processing algorithms
stair-case effect
taut-string algorithm
Time series
Time series analysis
Trends
Title Accurate Changing Point Detection for Mean Filtering
URI https://ieeexplore.ieee.org/document/7378883
https://www.proquest.com/docview/1761608969
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaigEGXgVRKMgDI27TxvFjrICKoVSV6NAtsi8XKUuK2pTfj-2kFRIsbJGVSLk767uz7-47Qh5dSOHcokXGR2bMuMkSZlXEmRDcWucQQdlA4jqT87larfSiRZ4OvTCIGIrPcOAfQy4_W8POX5UNpSc_V3GbtKWUda_WAXW946nrCyPmEFbtU5KRHs4-Fr6GSww8PZfwg-rCIJVf6BtcyvTsfz9zTk6b0JFOaltfkBaWl-TkB6Fgl_AJwM6TP9DQNeDW6GJdlBV9wSrUXJXUBan0HU1Jp4VPlLtXrshy-rp8fmPNXARWcKUZahBOWpAaMuPOY541y4GUzROnds4BXVBjOI6BQ-bCLeSQGIzH-TiPMM8A42vSKdcl3hCaWAOxdScQAPDMgVoiGp1n0uGgUGh6pOsFTz9r5ou0kblH-nvNpc2W36ZOtSMRKS307d9f3ZFjb4W65LlPOtVmh_fkCL6qYrt5CNb8BgE_nns
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDLXGQAIOfA3EYEAOHOnWtWnaHCdgGqKbJrHDblXqulIvHdo6fj9Juk1IcOFWRa1U29GzE9vPAI86pNBuMSWH95XncJUFThq53BGCp6l2iBillsQ1DieTaD6X0wY87XphiMgWn1HXPNpcfrbAtbkq64WG_Dzy92A_4Nzr191aO9w1rqeuMHQdjbHRNinpyl78MTVVXKJrCLqEGVVnR6n8wl_rVIan__udMzjZBI9sUFv7HBpUXsDxD0rBFvAB4trQPzDbN6DX2HRRlBV7ocpWXZVMh6lsTKpkw8KkyvUrlzAbvs6eR85mMoJT8Eg6JFFoaTGUmCl9IjO8WRqm0jzQiuccSYc1ipOHHDMdcBHHQJHv5V7uUp4h-VfQLBclXQMLUoV-qs8giGi4A2VIpGSehRoJRUSqDS0jePJZc18kG5nb0NlqLtls-lWiVdsXbiSFvPn7qwc4HM3GcRK_Td5v4chYpC6A7kCzWq7pDg7wqypWy3tr2W9w-6HC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+Changing+Point+Detection+for+Mean+Filtering&rft.jtitle=IEEE+signal+processing+letters&rft.au=Ottersten%2C+Johan&rft.au=Wahlberg%2C+Bo&rft.au=Rojas%2C+Cristian+R.&rft.date=2016-02-01&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=23&rft.issue=2&rft.spage=297&rft.epage=301&rft_id=info:doi/10.1109%2FLSP.2016.2517605&rft.externalDocID=7378883
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon