Performance Comparison of Containerized HBase Clusters on Kubernetes
The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBas...
Uloženo v:
| Vydáno v: | 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
07.11.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster. |
|---|---|
| AbstractList | The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster. |
| Author | Shieh, Ce-Kuen Chang, Jyh-Biau Lo, Ta-Chun Tao, Chun-Ying |
| Author_xml | – sequence: 1 givenname: Ta-Chun surname: Lo fullname: Lo, Ta-Chun email: N28091108@gs.ncku.edu.tw organization: National Cheng Kung University,Institute of Electrical Engineering,Department of Electrical Enginnering,Tainan,Taiwan – sequence: 2 givenname: Chun-Ying surname: Tao fullname: Tao, Chun-Ying email: taochungying@gmail.com organization: National Cheng Kung University,Institute of Electrical Engineering,Department of Electrical Enginnering,Tainan,Taiwan – sequence: 3 givenname: Jyh-Biau surname: Chang fullname: Chang, Jyh-Biau email: andrew@gm.lhu.edu.tw organization: Lunghwa University of Science and Technology,Department of Electronic Engineering,Taoyuan,Taiwan – sequence: 4 givenname: Ce-Kuen surname: Shieh fullname: Shieh, Ce-Kuen email: shieh@ee.ncku.edu.tw organization: National Cheng Kung University,Institute of Electrical Engineering,Department of Electrical Enginnering,Tainan,Taiwan |
| BookMark | eNotj89KAzEYxCPoQWufwIP7Arsm2WST71jXasWCYnsv-fMFAt1sSbYHfXoX7GkY5scwc0eu05iQkEdGG8YoPH2vdru1FKBEwynnDYAGzcQVWYLSrOvmSACTt-TlC3MY82CSw6ofh5PJsYypGsPs0mRiwhx_0VebZ1Nm4nguE-ZSzcjH2WJOOGG5JzfBHAsuL7og-9f1vt_U28-39361raPQUFuvKFJGmVAerfNaMi9bQR31LCg3DwtSWy48D9aazgAFzqRzineCA7Xtgjz810ZEPJxyHEz-OVyutX-HG0lI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/RASSE54974.2022.9989814 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665494915 1665494913 |
| EndPage | 7 |
| ExternalDocumentID | 9989814 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i489-bd70e010147debcd851d5340c0d1f7c978f58b24d2fbba6a909215cc7264290b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:51:44 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i489-bd70e010147debcd851d5340c0d1f7c978f58b24d2fbba6a909215cc7264290b3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9989814 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov.-7 |
| PublicationDateYYYYMMDD | 2022-11-07 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-7 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE) |
| PublicationTitleAbbrev | RASSE |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8121549 |
| Snippet | The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Big Data Container Containers Docker Ecosystems HBase HDFS Kubernetes Metals NoSQL databases Performance evaluation YCSB |
| Title | Performance Comparison of Containerized HBase Clusters on Kubernetes |
| URI | https://ieeexplore.ieee.org/document/9989814 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSgMxEB1q8eBJpRW1Kjl4dNvsNm02R60tBaUUW6S3skkmsCBbabse_Hoz6dIiePEWQiBkAnkzk3nzAO55xqV1Ioti4ShAiV2ktVERWu29ceMRNci3vb_KySRdLNS0Bg97LgwihuIzbNMw_OXblSkpVdZRJHZIqtVHUvZ3XK2qZCvmqvP2OJsNfbgjKVWSJO1q9S_ZlIAao9P_7XcGzQP9jk33wHIONSwa8Dw9lPizwV49kK0cow5TGZH48m-0bPzkgYkNPkpqgbBhfslLqXFdUIa1CfPRcD4YR5UEQpSLVEXaSo5BTlda1MZ698j2uoIbbmMnjY8AXS_VibCJ0zrrZ4orD-HGSO_mJIrr7gXUi1WBl8BcTC16pXBKSNFHzFw3RWX8g-gMKoFX0CADLD93TS6W1dmv_55uwQnZOJDy5A3Ut-sSb-HYfG3zzfou3MwPQlmRoA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB3EFtpTW7T0uzn02NXsGs3m2FrFohWpUrzJJpmAIGtRt4f--mbWRSn00lsIgZAJ5M1M5s0DeOAJl9aJJAiFowAldIHWRgVotffGjUfUXL7tYyCHw3g6VaMSPO64MIiYF59hjYb5X75dmoxSZXVFYoekWn1AylnNLVurKNoKuaq_P43HHR_wSEqWRFGtWP9LOCXHje7J_3Y8heqegMdGO2g5gxKmFXgZ7Yv8WXunH8iWjlGPqYRofPNvtKz37KGJtRcZNUFYM7-kn2lcpZRjrcKk25m0e0EhghDMRawCbSXHXFBXWtTGegfJNhuCG25DJ42PAV0z1pGwkdM6aSWKKw_ixkjv6ESK68Y5lNNlihfAXEhNeqVwSkjRQkxcI0Zl_JPoDCqBl1AhA8w-t20uZsXZr_6evoej3uRtMBu8DvvXcEz2zil68gbKm1WGt3Bovjbz9eouv6UfDISU6w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Recent+Advances+in+Systems+Science+and+Engineering+%28RASSE%29&rft.atitle=Performance+Comparison+of+Containerized+HBase+Clusters+on+Kubernetes&rft.au=Lo%2C+Ta-Chun&rft.au=Tao%2C+Chun-Ying&rft.au=Chang%2C+Jyh-Biau&rft.au=Shieh%2C+Ce-Kuen&rft.date=2022-11-07&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FRASSE54974.2022.9989814&rft.externalDocID=9989814 |