Performance Comparison of Containerized HBase Clusters on Kubernetes

The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBas...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE) s. 1 - 7
Hlavní autoři: Lo, Ta-Chun, Tao, Chun-Ying, Chang, Jyh-Biau, Shieh, Ce-Kuen
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 07.11.2022
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster.
AbstractList The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL databases when handling extensive data, many developers choose the NoSQL database as their first choice. Among all the NoSQL databases, HBase has become a popular choice due to its flexibility and high efficiency in the big data processing field. HBase is a column-oriented NoSQL database. It uses HDFS storage and is suitable for integrating with Hadoop ecosystem applications. However, deploying an HBase cluster on bare metal or virtual machines could be pretty complicated and time-consuming. The container technology can make HBase installation more convenient. Nevertheless, containerized HBase can be deployed in different ways. Deploying the HBase cluster in a proper approach can achieve higher performance. In this research, we propose two approaches, namely the Container-dedicated approach and the Container-shared approach, to containerize HBase on Kubernetes. Two benchmark tools are used to compare their performance under different workloads. According to experiment results, the Container-dedicated approach is suitable for writeheavy and read/write balanced applications. The container-shared approach shows a better performance in read-heavy applications. The test result will give future developers a reference when designing a containerized HBase cluster.
Author Shieh, Ce-Kuen
Chang, Jyh-Biau
Lo, Ta-Chun
Tao, Chun-Ying
Author_xml – sequence: 1
  givenname: Ta-Chun
  surname: Lo
  fullname: Lo, Ta-Chun
  email: N28091108@gs.ncku.edu.tw
  organization: National Cheng Kung University,Institute of Electrical Engineering,Department of Electrical Enginnering,Tainan,Taiwan
– sequence: 2
  givenname: Chun-Ying
  surname: Tao
  fullname: Tao, Chun-Ying
  email: taochungying@gmail.com
  organization: National Cheng Kung University,Institute of Electrical Engineering,Department of Electrical Enginnering,Tainan,Taiwan
– sequence: 3
  givenname: Jyh-Biau
  surname: Chang
  fullname: Chang, Jyh-Biau
  email: andrew@gm.lhu.edu.tw
  organization: Lunghwa University of Science and Technology,Department of Electronic Engineering,Taoyuan,Taiwan
– sequence: 4
  givenname: Ce-Kuen
  surname: Shieh
  fullname: Shieh, Ce-Kuen
  email: shieh@ee.ncku.edu.tw
  organization: National Cheng Kung University,Institute of Electrical Engineering,Department of Electrical Enginnering,Tainan,Taiwan
BookMark eNotj89KAzEYxCPoQWufwIP7Arsm2WST71jXasWCYnsv-fMFAt1sSbYHfXoX7GkY5scwc0eu05iQkEdGG8YoPH2vdru1FKBEwynnDYAGzcQVWYLSrOvmSACTt-TlC3MY82CSw6ofh5PJsYypGsPs0mRiwhx_0VebZ1Nm4nguE-ZSzcjH2WJOOGG5JzfBHAsuL7og-9f1vt_U28-39361raPQUFuvKFJGmVAerfNaMi9bQR31LCg3DwtSWy48D9aazgAFzqRzineCA7Xtgjz810ZEPJxyHEz-OVyutX-HG0lI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/RASSE54974.2022.9989814
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665494915
1665494913
EndPage 7
ExternalDocumentID 9989814
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i489-bd70e010147debcd851d5340c0d1f7c978f58b24d2fbba6a909215cc7264290b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:51:44 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i489-bd70e010147debcd851d5340c0d1f7c978f58b24d2fbba6a909215cc7264290b3
PageCount 7
ParticipantIDs ieee_primary_9989814
PublicationCentury 2000
PublicationDate 2022-Nov.-7
PublicationDateYYYYMMDD 2022-11-07
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-7
  day: 07
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE)
PublicationTitleAbbrev RASSE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8121549
Snippet The demand for large-volume database storage has become an essential issue with the rising trend of big data. Since the NoSQL database performs better than SQL...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Big Data
Container
Containers
Docker
Ecosystems
HBase
HDFS
Kubernetes
Metals
NoSQL databases
Performance evaluation
YCSB
Title Performance Comparison of Containerized HBase Clusters on Kubernetes
URI https://ieeexplore.ieee.org/document/9989814
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BSgMxEB1q8eBJpRW1Kjl4dNvsNm02R60tBaUUW6S3skkmsCBbabse_Hoz6dIiePEWQiBkAnkzk3nzAO55xqV1Ioti4ShAiV2ktVERWu29ceMRNci3vb_KySRdLNS0Bg97LgwihuIzbNMw_OXblSkpVdZRJHZIqtVHUvZ3XK2qZCvmqvP2OJsNfbgjKVWSJO1q9S_ZlIAao9P_7XcGzQP9jk33wHIONSwa8Dw9lPizwV49kK0cow5TGZH48m-0bPzkgYkNPkpqgbBhfslLqXFdUIa1CfPRcD4YR5UEQpSLVEXaSo5BTlda1MZ698j2uoIbbmMnjY8AXS_VibCJ0zrrZ4orD-HGSO_mJIrr7gXUi1WBl8BcTC16pXBKSNFHzFw3RWX8g-gMKoFX0CADLD93TS6W1dmv_55uwQnZOJDy5A3Ut-sSb-HYfG3zzfou3MwPQlmRoA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEB3EFtpTW7T0uzn02NXsGs3m2FrFohWpUrzJJpmAIGtRt4f--mbWRSn00lsIgZAJ5M1M5s0DeOAJl9aJJAiFowAldIHWRgVotffGjUfUXL7tYyCHw3g6VaMSPO64MIiYF59hjYb5X75dmoxSZXVFYoekWn1AylnNLVurKNoKuaq_P43HHR_wSEqWRFGtWP9LOCXHje7J_3Y8heqegMdGO2g5gxKmFXgZ7Yv8WXunH8iWjlGPqYRofPNvtKz37KGJtRcZNUFYM7-kn2lcpZRjrcKk25m0e0EhghDMRawCbSXHXFBXWtTGegfJNhuCG25DJ42PAV0z1pGwkdM6aSWKKw_ixkjv6ESK68Y5lNNlihfAXEhNeqVwSkjRQkxcI0Zl_JPoDCqBl1AhA8w-t20uZsXZr_6evoej3uRtMBu8DvvXcEz2zil68gbKm1WGt3Bovjbz9eouv6UfDISU6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Recent+Advances+in+Systems+Science+and+Engineering+%28RASSE%29&rft.atitle=Performance+Comparison+of+Containerized+HBase+Clusters+on+Kubernetes&rft.au=Lo%2C+Ta-Chun&rft.au=Tao%2C+Chun-Ying&rft.au=Chang%2C+Jyh-Biau&rft.au=Shieh%2C+Ce-Kuen&rft.date=2022-11-07&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FRASSE54974.2022.9989814&rft.externalDocID=9989814