A predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration
Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for most areas. Experienced workers estimate the chloride-induced deterioration through the corrosion of reinforced concrete, which results in ine...
Uložené v:
| Vydané v: | IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (Online) s. 751 - 756 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2021
|
| Predmet: | |
| ISSN: | 2693-9371 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for most areas. Experienced workers estimate the chloride-induced deterioration through the corrosion of reinforced concrete, which results in ineffective maintenance due to the inaccurate estimation. Hence, we formulate a predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration. The Hidden semi-Markov Models are capable of handling the "hidden states" scenario and have more general applications than the Hidden Markov Models. We derive the corresponding forward-backward algorithm of the Hidden semi-Markov Model to predict the future deterioration state based on the past observation sequences. A numerical example of reinforced concrete bridge decks is utilized to illustrate the applicability of the overall approach. In the numerical example, we discover that the predictive results of the Hidden semi-Markov Models outperform those of the Hidden Markov Models when we regard the deterioration trend from the physical model-Fick's second law as the benchmark. When the detection intervals are stochastic, the Hidden semi-Markov model is more practical than the Hidden Markov model. |
|---|---|
| AbstractList | Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for most areas. Experienced workers estimate the chloride-induced deterioration through the corrosion of reinforced concrete, which results in ineffective maintenance due to the inaccurate estimation. Hence, we formulate a predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration. The Hidden semi-Markov Models are capable of handling the "hidden states" scenario and have more general applications than the Hidden Markov Models. We derive the corresponding forward-backward algorithm of the Hidden semi-Markov Model to predict the future deterioration state based on the past observation sequences. A numerical example of reinforced concrete bridge decks is utilized to illustrate the applicability of the overall approach. In the numerical example, we discover that the predictive results of the Hidden semi-Markov Models outperform those of the Hidden Markov Models when we regard the deterioration trend from the physical model-Fick's second law as the benchmark. When the detection intervals are stochastic, the Hidden semi-Markov model is more practical than the Hidden Markov model. |
| Author | Guo, Chunhui Liang, Zhenglin Zeng, Junqi Song, Minyuan Xue, Zongqi |
| Author_xml | – sequence: 1 givenname: Chunhui surname: Guo fullname: Guo, Chunhui email: gch19@mails.tsinghua.edu.cn organization: Tsinghua University,Department of Industrial Engineering – sequence: 2 givenname: Zhenglin surname: Liang fullname: Liang, Zhenglin email: zhenglinliang@tsinghua.edu.cn organization: Tsinghua University,Department of Industrial Engineering – sequence: 3 givenname: Junqi surname: Zeng fullname: Zeng, Junqi email: zjq20@mails.tsinghua.edu.cn organization: Tsinghua University,Department of Industrial Engineering – sequence: 4 givenname: Minyuan surname: Song fullname: Song, Minyuan email: smy20@mails.tsinghua.edu.cn organization: Tsinghua University,Department of Industrial Engineering – sequence: 5 givenname: Zongqi surname: Xue fullname: Xue, Zongqi email: xuezq17@mails.tsinghua.edu.cn organization: Tsinghua University,Department of Industrial Engineering |
| BookMark | eNotzN1KwzAYgOEoCm5zVyBCbiD1y1_THI6im7Ah6s48GG3zRTO7ZqTdwLu3oEcPvAfvlFx1sUNC7jlknIN9eH17Z6XWoHQmQPAMgHN1QaY8z7Uyhcz1JZmI3EpmpeE3ZN73ewCQAhRwMSEfC3pM6EIzhDPSVXAOO9rjIbBNlb7jmW6iw5b6mGidgvvEnvaneo_NQIdIm682jhVZ6NypQUcdDphCTNUQYndLrn3V9jj_d0a2T4_bcsXWL8vncrFmQRWWVVLXmjfGe8krD0J60MaaETSqGItF4TX4vDFKGqhrLaHQwmgEMarkjNz9bQMi7o4pHKr0s7NGCWGl_AXfZlSq |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/QRS-C55045.2021.00114 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1665478365 9781665478366 |
| EISSN | 2693-9371 |
| EndPage | 756 |
| ExternalDocumentID | 9742293 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72001124 funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i489-a35b51c7ff31af023f057973f0e748af09e2f50f6c74370bb53085275e0285243 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:35:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i489-a35b51c7ff31af023f057973f0e748af09e2f50f6c74370bb53085275e0285243 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_9742293 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec. |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (Online) |
| PublicationTitleAbbrev | QRS-C |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003204012 |
| Score | 1.7783093 |
| Snippet | Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 751 |
| SubjectTerms | Benchmark testing Bridges chloride-induced deterioration dectection interval Estimation forward-backward algorithm Hidden Markov models Hidden semi-Markov Model Ions Prediction algorithms Predictive models |
| Title | A predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration |
| URI | https://ieeexplore.ieee.org/document/9742293 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGjsbvZpNkcpVh6kFK1SMFDabIJLuhu6ev3O7NdKoIXTwm5LEzCft88vhmAW2GlDCnFNZywXMbOcBMllnuHdK7XQwyqMvhvT3o0SqdTM27A3V4L472vis_8PW2rXH5Wug2FyrrIfQXCUxOaWuudVmsfT0kEPsdY1CKdODLd55dX3kcCLhW6gSKucg7y1xCVCkMGR__7-jF0fsR4bLyHmRNo-KIN7w9ssaQcC_2t2JD6gBRs5b9yTuKbcstoxtknQ0bK6kYObLWxFHNh65K5D6q7yzxHhxyvNmMZFcXk9WvowGTwOOkPeT0ngecyNXyeKKtip0NI4nlADA4kMNW4eC1TPDFeBBWFnkO2oCNrVYI8S2jlkVsoIZNTaBVl4c-AGXT3qFtPpqWjLpJGBTVXNkKkU5mKonNok11mi10njFltkou_jy_hkAy_K_64gtZ6ufHXcOC263y1vKmu7xvevpmb |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_Bo7G426W6OUiwVa6lapOChNNkEC7pb-vr9zmyXiuDFU0IuC5mw3zePbwbgWhgpfUJxDSsMl6HVXAeR4c4inWs2EYOKDP5bN-71kuFQ9ytws9HCOOeK4jN3S9sil5_mdkmhsgZyX4HwtAXbSkoRrtVam4hKJPBBhqKU6YSBbjy_vPIWUnCp0BEUYZF1kL_GqBQo0t7_3_cPoP4jx2P9DdAcQsVlNXi_Y9MZZVnof8U61AkkY3P3NeEkv8lXjKacfTLkpKxs5cDmS0NRF7bImf2gyrvUcXTJ0bgpS6ksZlK-hzoM2veDVoeXkxL4RCaajyNlVGhj76Nw7BGFPUlMY1xcLBM80U54FfimRb4QB8aoCJmWiJVDdqGEjI6gmuWZOwam0eGjfj1pLC31kdTKq7EyAWKdSlUQnECN7mU0XffCGJVXcvr38RXsdgZP3VH3ofd4BntkhHUpyDlUF7Olu4Adu1pM5rPLwpTfDfic4g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Software+Quality%2C+Reliability+and+Security+Companion+%28QRS-C%29+%28Online%29&rft.atitle=A+predictive+Hidden+semi-Markov+Model+for+bridges+subject+to+chloride-induced+deterioration&rft.au=Guo%2C+Chunhui&rft.au=Liang%2C+Zhenglin&rft.au=Zeng%2C+Junqi&rft.au=Song%2C+Minyuan&rft.date=2021-12-01&rft.pub=IEEE&rft.eissn=2693-9371&rft.spage=751&rft.epage=756&rft_id=info:doi/10.1109%2FQRS-C55045.2021.00114&rft.externalDocID=9742293 |