A predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration

Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for most areas. Experienced workers estimate the chloride-induced deterioration through the corrosion of reinforced concrete, which results in ine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (Online) s. 751 - 756
Hlavní autori: Guo, Chunhui, Liang, Zhenglin, Zeng, Junqi, Song, Minyuan, Xue, Zongqi
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2021
Predmet:
ISSN:2693-9371
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for most areas. Experienced workers estimate the chloride-induced deterioration through the corrosion of reinforced concrete, which results in ineffective maintenance due to the inaccurate estimation. Hence, we formulate a predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration. The Hidden semi-Markov Models are capable of handling the "hidden states" scenario and have more general applications than the Hidden Markov Models. We derive the corresponding forward-backward algorithm of the Hidden semi-Markov Model to predict the future deterioration state based on the past observation sequences. A numerical example of reinforced concrete bridge decks is utilized to illustrate the applicability of the overall approach. In the numerical example, we discover that the predictive results of the Hidden semi-Markov Models outperform those of the Hidden Markov Models when we regard the deterioration trend from the physical model-Fick's second law as the benchmark. When the detection intervals are stochastic, the Hidden semi-Markov model is more practical than the Hidden Markov model.
AbstractList Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for most areas. Experienced workers estimate the chloride-induced deterioration through the corrosion of reinforced concrete, which results in ineffective maintenance due to the inaccurate estimation. Hence, we formulate a predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration. The Hidden semi-Markov Models are capable of handling the "hidden states" scenario and have more general applications than the Hidden Markov Models. We derive the corresponding forward-backward algorithm of the Hidden semi-Markov Model to predict the future deterioration state based on the past observation sequences. A numerical example of reinforced concrete bridge decks is utilized to illustrate the applicability of the overall approach. In the numerical example, we discover that the predictive results of the Hidden semi-Markov Models outperform those of the Hidden Markov Models when we regard the deterioration trend from the physical model-Fick's second law as the benchmark. When the detection intervals are stochastic, the Hidden semi-Markov model is more practical than the Hidden Markov model.
Author Guo, Chunhui
Liang, Zhenglin
Zeng, Junqi
Song, Minyuan
Xue, Zongqi
Author_xml – sequence: 1
  givenname: Chunhui
  surname: Guo
  fullname: Guo, Chunhui
  email: gch19@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Industrial Engineering
– sequence: 2
  givenname: Zhenglin
  surname: Liang
  fullname: Liang, Zhenglin
  email: zhenglinliang@tsinghua.edu.cn
  organization: Tsinghua University,Department of Industrial Engineering
– sequence: 3
  givenname: Junqi
  surname: Zeng
  fullname: Zeng, Junqi
  email: zjq20@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Industrial Engineering
– sequence: 4
  givenname: Minyuan
  surname: Song
  fullname: Song, Minyuan
  email: smy20@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Industrial Engineering
– sequence: 5
  givenname: Zongqi
  surname: Xue
  fullname: Xue, Zongqi
  email: xuezq17@mails.tsinghua.edu.cn
  organization: Tsinghua University,Department of Industrial Engineering
BookMark eNotzN1KwzAYgOEoCm5zVyBCbiD1y1_THI6im7Ah6s48GG3zRTO7ZqTdwLu3oEcPvAfvlFx1sUNC7jlknIN9eH17Z6XWoHQmQPAMgHN1QaY8z7Uyhcz1JZmI3EpmpeE3ZN73ewCQAhRwMSEfC3pM6EIzhDPSVXAOO9rjIbBNlb7jmW6iw5b6mGidgvvEnvaneo_NQIdIm682jhVZ6NypQUcdDphCTNUQYndLrn3V9jj_d0a2T4_bcsXWL8vncrFmQRWWVVLXmjfGe8krD0J60MaaETSqGItF4TX4vDFKGqhrLaHQwmgEMarkjNz9bQMi7o4pHKr0s7NGCWGl_AXfZlSq
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/QRS-C55045.2021.00114
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665478365
9781665478366
EISSN 2693-9371
EndPage 756
ExternalDocumentID 9742293
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72001124
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i489-a35b51c7ff31af023f057973f0e748af09e2f50f6c74370bb53085275e0285243
IEDL.DBID RIE
IngestDate Wed Aug 27 02:35:15 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i489-a35b51c7ff31af023f057973f0e748af09e2f50f6c74370bb53085275e0285243
PageCount 6
ParticipantIDs ieee_primary_9742293
PublicationCentury 2000
PublicationDate 2021-Dec.
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C) (Online)
PublicationTitleAbbrev QRS-C
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204012
Score 1.7783093
Snippet Chloride-induced deterioration is one of the main deterioration mechanisms for bridges. Directly detecting the chloride ion concentration is uneconomical for...
SourceID ieee
SourceType Publisher
StartPage 751
SubjectTerms Benchmark testing
Bridges
chloride-induced deterioration
dectection interval
Estimation
forward-backward algorithm
Hidden Markov models
Hidden semi-Markov Model
Ions
Prediction algorithms
Predictive models
Title A predictive Hidden semi-Markov Model for bridges subject to chloride-induced deterioration
URI https://ieeexplore.ieee.org/document/9742293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4sGTSiu-ycGjsbvZpNkcpVh6kFK1SMFDabIJLuhu6ev3O7NdKoIXTwm5LEzCft88vhmAW2GlDCnFNZywXMbOcBMllnuHdK7XQwyqMvhvT3o0SqdTM27A3V4L472vis_8PW2rXH5Wug2FyrrIfQXCUxOaWuudVmsfT0kEPsdY1CKdODLd55dX3kcCLhW6gSKucg7y1xCVCkMGR__7-jF0fsR4bLyHmRNo-KIN7w9ssaQcC_2t2JD6gBRs5b9yTuKbcstoxtknQ0bK6kYObLWxFHNh65K5D6q7yzxHhxyvNmMZFcXk9WvowGTwOOkPeT0ngecyNXyeKKtip0NI4nlADA4kMNW4eC1TPDFeBBWFnkO2oCNrVYI8S2jlkVsoIZNTaBVl4c-AGXT3qFtPpqWjLpJGBTVXNkKkU5mKonNok11mi10njFltkou_jy_hkAy_K_64gtZ6ufHXcOC263y1vKmu7xvevpmb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_Bo7G426W6OUiwVa6lapOChNNkEC7pb-vr9zmyXiuDFU0IuC5mw3zePbwbgWhgpfUJxDSsMl6HVXAeR4c4inWs2EYOKDP5bN-71kuFQ9ytws9HCOOeK4jN3S9sil5_mdkmhsgZyX4HwtAXbSkoRrtVam4hKJPBBhqKU6YSBbjy_vPIWUnCp0BEUYZF1kL_GqBQo0t7_3_cPoP4jx2P9DdAcQsVlNXi_Y9MZZVnof8U61AkkY3P3NeEkv8lXjKacfTLkpKxs5cDmS0NRF7bImf2gyrvUcXTJ0bgpS6ksZlK-hzoM2veDVoeXkxL4RCaajyNlVGhj76Nw7BGFPUlMY1xcLBM80U54FfimRb4QB8aoCJmWiJVDdqGEjI6gmuWZOwam0eGjfj1pLC31kdTKq7EyAWKdSlUQnECN7mU0XffCGJVXcvr38RXsdgZP3VH3ofd4BntkhHUpyDlUF7Olu4Adu1pM5rPLwpTfDfic4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Software+Quality%2C+Reliability+and+Security+Companion+%28QRS-C%29+%28Online%29&rft.atitle=A+predictive+Hidden+semi-Markov+Model+for+bridges+subject+to+chloride-induced+deterioration&rft.au=Guo%2C+Chunhui&rft.au=Liang%2C+Zhenglin&rft.au=Zeng%2C+Junqi&rft.au=Song%2C+Minyuan&rft.date=2021-12-01&rft.pub=IEEE&rft.eissn=2693-9371&rft.spage=751&rft.epage=756&rft_id=info:doi/10.1109%2FQRS-C55045.2021.00114&rft.externalDocID=9742293