Neural Network Modeling and Assessment of the Territorial Situation
The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing situation in the region are considered. The tasks of neural network modeling of a complex dynamic territorial structure - a regional situation are...
Uložené v:
| Vydané v: | IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference s. 514 - 517 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
25.01.2022
|
| Predmet: | |
| ISSN: | 2376-6565 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing situation in the region are considered. The tasks of neural network modeling of a complex dynamic territorial structure - a regional situation are formulated. The technologies for the formalized representation of the territorial situation in the region for spatial analysis using the apparatus of artificial neural networks have been determined. The order of formation of parameters and the range of output estimates are established. As a basic structure of a neural network, a recurrent neural network with a multilayer perceptron architecture is proposed. A neural network learning mechanism is substantiated in the form of an error backpropagation algorithm, which is optimal for the classification problem using a recurrent neural network. |
|---|---|
| AbstractList | The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing situation in the region are considered. The tasks of neural network modeling of a complex dynamic territorial structure - a regional situation are formulated. The technologies for the formalized representation of the territorial situation in the region for spatial analysis using the apparatus of artificial neural networks have been determined. The order of formation of parameters and the range of output estimates are established. As a basic structure of a neural network, a recurrent neural network with a multilayer perceptron architecture is proposed. A neural network learning mechanism is substantiated in the form of an error backpropagation algorithm, which is optimal for the classification problem using a recurrent neural network. |
| Author | Dytlov, Sergey A. Bidenko, Sergey I. Minakov, Vladimir F. Zinchenko, Elena G. Ivanovskii, Aleksei N. Khramov, Igor S. |
| Author_xml | – sequence: 1 givenname: Elena G. surname: Zinchenko fullname: Zinchenko, Elena G. email: zinchenkoelenag@gmail.com organization: Kerch State Maritime Technological University,Department of Electrical equipment of ships and industrial automation,Kerch,Russia – sequence: 2 givenname: Sergey I. surname: Bidenko fullname: Bidenko, Sergey I. email: BidenkoSI@inteltech.ru organization: Department of IT Security Inteltech,St. Peterburg,Russia – sequence: 3 givenname: Igor S. surname: Khramov fullname: Khramov, Igor S. email: khramov_igor@mail.ru organization: Information technology center,Department of IT technology,Tver,Russia – sequence: 4 givenname: Vladimir F. surname: Minakov fullname: Minakov, Vladimir F. email: MinakovVladimir@mail.ru organization: St. Petersburg State University of Economics,Department of IT Security,St. Peterburg,Russia – sequence: 5 givenname: Sergey A. surname: Dytlov fullname: Dytlov, Sergey A. email: Dytlov-Sergey@mail.ru organization: St. Petersburg State University of Economics,Department of IT Security,St. Peterburg,Russia – sequence: 6 givenname: Aleksei N. surname: Ivanovskii fullname: Ivanovskii, Aleksei N. email: aleksei.ivanovskii@yandex.ru organization: Kerch State Maritime Technological University,Department of Electrical equipment of ships and industrial automation,Kerch,Russia |
| BookMark | eNotj8tOwzAURA0Cibb0C9hY7BNsJ9exl1VUHlIpEnRfOfYNGFIb2YkQf08luprNnNGZObkIMSAht5yVnDN9tx7aGF6nDHUDrBRMiFI3AMDYGZlzKaFmWov6nMxE1chCgoQrssz5k7Fjl-tGqBlptzglM9Atjj8xfdHn6HDw4Z2a4OgqZ8z5gGGksafjB9IdpuTHmPwRefPjZEYfwzW57M2QcXnKBdndr3ftY7F5eXhqV5vC10oW6BroFe-4FR2zRxvVaTDMKI2Vs6pDFLJ2DlgvwRptrdCVEhYYQM2b3lULcvM_6xFx_538waTf_ely9QfEGU9c |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ElConRus54750.2022.9755500 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISBN | 1665409924 9781665409933 1665409932 9781665409926 |
| EISSN | 2376-6565 |
| EndPage | 517 |
| ExternalDocumentID | 9755500 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i486-ed75f81b1c2b0c6568b95a0a89e3dc8bee264dd50f65ca9cc29382c5055417fd3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:40:30 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i486-ed75f81b1c2b0c6568b95a0a89e3dc8bee264dd50f65ca9cc29382c5055417fd3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_9755500 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-25 |
| PublicationDateYYYYMMDD | 2022-01-25 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference |
| PublicationTitleAbbrev | ElConRus |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0002219728 |
| Score | 1.7834115 |
| Snippet | The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 514 |
| SubjectTerms | Analytical models artificial neural network Artificial neural networks Backpropagation algorithms Economics Learning systems Multilayer perceptrons neural network model Recurrent neural networks spatial analysis territorial economic situation topological image of the geo-image of the economic situation |
| Title | Neural Network Modeling and Assessment of the Territorial Situation |
| URI | https://ieeexplore.ieee.org/document/9755500 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qEdSL2lb8Zg8e3TbZZJvdo5QWD1KKFumtbGY3UJBE-uHvdzaJUcGLt5AvwuzhvZnsew_gThHModTIrcok93lI3GDgON0fx5auRaU8-vUpmU7VYqFnLbhvtDDOuXLzmev7w_Jfvi1w50dlA51IItTUoO8lybDSajXzFCF8gJaqfUXDQA_Gb6Mif95tZEyoSJ2gEP36Bb-SVEogmRz_7xNOoPetyGOzBmtOoeXyDhx8qYo3HTj6YSzYhZH33DBvbFpt8mY-8czrzpnJLXtozDhZkTEigGzu7Rm9Wwg98rLaVu7fPZhPxvPRI6_jEvgqVkPubCIzIqEhijRAomkq1dIERmkXWVSpc8R9rJVBNpRoNCIBvRJIDEjGYZLZ6AzaeZG7c2BU3TS2mVCWurMMUVHHHcnIuUgZpdLwArq-Msv3yhBjWRfl8u_TV3Doi-_nFkJeQ3u73rkb2MeP7Wqzvi1X8RP_GJ6q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP0YU5he1G3ib3PwaLY2Tdb0KGNj4ixDi-w22iSFwWhlP_z7_dLWquDFW2jaUpLDe9_XvPcA7iTCnBKBolqmgto8JBorx1C8n3ONc14hj36b-mEo5_Ng1oD7WgtjjCkOn5meHRb_8nWudrZV1g98gYQaC_Q9wTlzSrVW3VFhzEZoycpZ1HWC_mg1zLOX3UZwxEWsBRnrVa_4laVSQMn46H8fcQzdb00emdVocwINk7Wh9aUr3rTh8Ie1YAeG1nUjXpGwPOZNbOaZVZ6TONPkobbjJHlKkAKSyBo0Wr8QfOR1uS39v7sQjUfRcEKrwAS65HJAjfZFijTUVSxxFBI1mQQidmIZGE8rmRiD7Edr4aQDoeJAKYR6yRRyIMFdP9XeKTSzPDNnQHx_kHCdMqmxPkuVklhze8IzxpOxlIl7Dh27Mov30hJjUS3Kxd-Xb6E1iZ6ni-lj-HQJB3YjbBeDiStobtc7cw376mO73Kxvih39BG7PofE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+NW+Russia+Young+Researchers+in+Electrical+and+Electronic+Engineering+Conference&rft.atitle=Neural+Network+Modeling+and+Assessment+of+the+Territorial+Situation&rft.au=Zinchenko%2C+Elena+G.&rft.au=Bidenko%2C+Sergey+I.&rft.au=Khramov%2C+Igor+S.&rft.au=Minakov%2C+Vladimir+F.&rft.date=2022-01-25&rft.pub=IEEE&rft.eissn=2376-6565&rft.spage=514&rft.epage=517&rft_id=info:doi/10.1109%2FElConRus54750.2022.9755500&rft.externalDocID=9755500 |