Neural Network Modeling and Assessment of the Territorial Situation

The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing situation in the region are considered. The tasks of neural network modeling of a complex dynamic territorial structure - a regional situation are...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference s. 514 - 517
Hlavní autori: Zinchenko, Elena G., Bidenko, Sergey I., Khramov, Igor S., Minakov, Vladimir F., Dytlov, Sergey A., Ivanovskii, Aleksei N.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 25.01.2022
Predmet:
ISSN:2376-6565
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing situation in the region are considered. The tasks of neural network modeling of a complex dynamic territorial structure - a regional situation are formulated. The technologies for the formalized representation of the territorial situation in the region for spatial analysis using the apparatus of artificial neural networks have been determined. The order of formation of parameters and the range of output estimates are established. As a basic structure of a neural network, a recurrent neural network with a multilayer perceptron architecture is proposed. A neural network learning mechanism is substantiated in the form of an error backpropagation algorithm, which is optimal for the classification problem using a recurrent neural network.
AbstractList The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing situation in the region are considered. The tasks of neural network modeling of a complex dynamic territorial structure - a regional situation are formulated. The technologies for the formalized representation of the territorial situation in the region for spatial analysis using the apparatus of artificial neural networks have been determined. The order of formation of parameters and the range of output estimates are established. As a basic structure of a neural network, a recurrent neural network with a multilayer perceptron architecture is proposed. A neural network learning mechanism is substantiated in the form of an error backpropagation algorithm, which is optimal for the classification problem using a recurrent neural network.
Author Dytlov, Sergey A.
Bidenko, Sergey I.
Minakov, Vladimir F.
Zinchenko, Elena G.
Ivanovskii, Aleksei N.
Khramov, Igor S.
Author_xml – sequence: 1
  givenname: Elena G.
  surname: Zinchenko
  fullname: Zinchenko, Elena G.
  email: zinchenkoelenag@gmail.com
  organization: Kerch State Maritime Technological University,Department of Electrical equipment of ships and industrial automation,Kerch,Russia
– sequence: 2
  givenname: Sergey I.
  surname: Bidenko
  fullname: Bidenko, Sergey I.
  email: BidenkoSI@inteltech.ru
  organization: Department of IT Security Inteltech,St. Peterburg,Russia
– sequence: 3
  givenname: Igor S.
  surname: Khramov
  fullname: Khramov, Igor S.
  email: khramov_igor@mail.ru
  organization: Information technology center,Department of IT technology,Tver,Russia
– sequence: 4
  givenname: Vladimir F.
  surname: Minakov
  fullname: Minakov, Vladimir F.
  email: MinakovVladimir@mail.ru
  organization: St. Petersburg State University of Economics,Department of IT Security,St. Peterburg,Russia
– sequence: 5
  givenname: Sergey A.
  surname: Dytlov
  fullname: Dytlov, Sergey A.
  email: Dytlov-Sergey@mail.ru
  organization: St. Petersburg State University of Economics,Department of IT Security,St. Peterburg,Russia
– sequence: 6
  givenname: Aleksei N.
  surname: Ivanovskii
  fullname: Ivanovskii, Aleksei N.
  email: aleksei.ivanovskii@yandex.ru
  organization: Kerch State Maritime Technological University,Department of Electrical equipment of ships and industrial automation,Kerch,Russia
BookMark eNotj8tOwzAURA0Cibb0C9hY7BNsJ9exl1VUHlIpEnRfOfYNGFIb2YkQf08luprNnNGZObkIMSAht5yVnDN9tx7aGF6nDHUDrBRMiFI3AMDYGZlzKaFmWov6nMxE1chCgoQrssz5k7Fjl-tGqBlptzglM9Atjj8xfdHn6HDw4Z2a4OgqZ8z5gGGksafjB9IdpuTHmPwRefPjZEYfwzW57M2QcXnKBdndr3ftY7F5eXhqV5vC10oW6BroFe-4FR2zRxvVaTDMKI2Vs6pDFLJ2DlgvwRptrdCVEhYYQM2b3lULcvM_6xFx_538waTf_ely9QfEGU9c
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ElConRus54750.2022.9755500
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISBN 1665409924
9781665409933
1665409932
9781665409926
EISSN 2376-6565
EndPage 517
ExternalDocumentID 9755500
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i486-ed75f81b1c2b0c6568b95a0a89e3dc8bee264dd50f65ca9cc29382c5055417fd3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:40:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i486-ed75f81b1c2b0c6568b95a0a89e3dc8bee264dd50f65ca9cc29382c5055417fd3
PageCount 4
ParticipantIDs ieee_primary_9755500
PublicationCentury 2000
PublicationDate 2022-Jan.-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-25
  day: 25
PublicationDecade 2020
PublicationTitle IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference
PublicationTitleAbbrev ElConRus
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002219728
Score 1.7834115
Snippet The technologies of using the apparatus of an artificial neural network in a new subject area - procedures for spatial assessment of the rapidly changing...
SourceID ieee
SourceType Publisher
StartPage 514
SubjectTerms Analytical models
artificial neural network
Artificial neural networks
Backpropagation algorithms
Economics
Learning systems
Multilayer perceptrons
neural network model
Recurrent neural networks
spatial analysis
territorial economic situation
topological image of the geo-image of the economic situation
Title Neural Network Modeling and Assessment of the Territorial Situation
URI https://ieeexplore.ieee.org/document/9755500
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qEdSL2lb8Zg8e3TbZZJvdo5QWD1KKFumtbGY3UJBE-uHvdzaJUcGLt5AvwuzhvZnsew_gThHModTIrcok93lI3GDgON0fx5auRaU8-vUpmU7VYqFnLbhvtDDOuXLzmev7w_Jfvi1w50dlA51IItTUoO8lybDSajXzFCF8gJaqfUXDQA_Gb6Mif95tZEyoSJ2gEP36Bb-SVEogmRz_7xNOoPetyGOzBmtOoeXyDhx8qYo3HTj6YSzYhZH33DBvbFpt8mY-8czrzpnJLXtozDhZkTEigGzu7Rm9Wwg98rLaVu7fPZhPxvPRI6_jEvgqVkPubCIzIqEhijRAomkq1dIERmkXWVSpc8R9rJVBNpRoNCIBvRJIDEjGYZLZ6AzaeZG7c2BU3TS2mVCWurMMUVHHHcnIuUgZpdLwArq-Msv3yhBjWRfl8u_TV3Doi-_nFkJeQ3u73rkb2MeP7Wqzvi1X8RP_GJ6q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP0YU5he1G3ib3PwaLY2Tdb0KGNj4ixDi-w22iSFwWhlP_z7_dLWquDFW2jaUpLDe9_XvPcA7iTCnBKBolqmgto8JBorx1C8n3ONc14hj36b-mEo5_Ng1oD7WgtjjCkOn5meHRb_8nWudrZV1g98gYQaC_Q9wTlzSrVW3VFhzEZoycpZ1HWC_mg1zLOX3UZwxEWsBRnrVa_4laVSQMn46H8fcQzdb00emdVocwINk7Wh9aUr3rTh8Ie1YAeG1nUjXpGwPOZNbOaZVZ6TONPkobbjJHlKkAKSyBo0Wr8QfOR1uS39v7sQjUfRcEKrwAS65HJAjfZFijTUVSxxFBI1mQQidmIZGE8rmRiD7Edr4aQDoeJAKYR6yRRyIMFdP9XeKTSzPDNnQHx_kHCdMqmxPkuVklhze8IzxpOxlIl7Dh27Mov30hJjUS3Kxd-Xb6E1iZ6ni-lj-HQJB3YjbBeDiStobtc7cw376mO73Kxvih39BG7PofE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+NW+Russia+Young+Researchers+in+Electrical+and+Electronic+Engineering+Conference&rft.atitle=Neural+Network+Modeling+and+Assessment+of+the+Territorial+Situation&rft.au=Zinchenko%2C+Elena+G.&rft.au=Bidenko%2C+Sergey+I.&rft.au=Khramov%2C+Igor+S.&rft.au=Minakov%2C+Vladimir+F.&rft.date=2022-01-25&rft.pub=IEEE&rft.eissn=2376-6565&rft.spage=514&rft.epage=517&rft_id=info:doi/10.1109%2FElConRus54750.2022.9755500&rft.externalDocID=9755500