A Pursuit Strategy for Multi-Agent Pursuit-Evasion Game via Multi-Agent Deep Deterministic Policy Gradient Algorithm
This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and p...
Uloženo v:
| Vydáno v: | Proceedings of ... IEEE International Conference on Unmanned Systems (Online) s. 418 - 423 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
28.10.2022
|
| Témata: | |
| ISSN: | 2771-7372 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and prove that the game model has Nash equilibrium. Then, we modify the multi-agent deep deterministic policy gradient (MADDPG) algorithm for seeking the Nash equilibrium. The simulation examples are given to illustrate the effectiveness of the designed method. |
|---|---|
| ISSN: | 2771-7372 |
| DOI: | 10.1109/ICUS55513.2022.9986838 |