Stochastic Optimal Operation for Integrated Energy System Considering Multiple Uncertainties

Given uncertainties of distributed generation (DG) output and multi-energy loads including electricity, heating, and cooling in integrated energy systems (IES), an IES stochastic optimal operation strategy considering multiple uncertainties of source-side and load-side is proposed in the paper. Firs...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE) s. 1 - 5
Hlavní autori: Li, Chengao, Pu, Yue, Gao, Yukun, Liu, Haoming
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 03.11.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Given uncertainties of distributed generation (DG) output and multi-energy loads including electricity, heating, and cooling in integrated energy systems (IES), an IES stochastic optimal operation strategy considering multiple uncertainties of source-side and load-side is proposed in the paper. Firstly, through analyzing the influences of multiple uncertainties, the stochastic optimization model of IES is established. Then, with the sample average approximation (SAA), the stochastic optimization model is converted into a deterministic mixed-integer linear programming model and solved by the CPLEX solver. Finally, the feasibility of the proposed strategy is verified through an example, and sensitivity analysis of different fluctuation degrees and uncertainty factors is further carried out. Compared with the traditional deterministic model, the proposed stochastic optimization model is more in line with reality.
AbstractList Given uncertainties of distributed generation (DG) output and multi-energy loads including electricity, heating, and cooling in integrated energy systems (IES), an IES stochastic optimal operation strategy considering multiple uncertainties of source-side and load-side is proposed in the paper. Firstly, through analyzing the influences of multiple uncertainties, the stochastic optimization model of IES is established. Then, with the sample average approximation (SAA), the stochastic optimization model is converted into a deterministic mixed-integer linear programming model and solved by the CPLEX solver. Finally, the feasibility of the proposed strategy is verified through an example, and sensitivity analysis of different fluctuation degrees and uncertainty factors is further carried out. Compared with the traditional deterministic model, the proposed stochastic optimization model is more in line with reality.
Author Pu, Yue
Gao, Yukun
Liu, Haoming
Li, Chengao
Author_xml – sequence: 1
  givenname: Chengao
  surname: Li
  fullname: Li, Chengao
  email: 1245666122@qq.com
  organization: College of Energy and Electrical Engineering, Hohai University,Nanjing,China,210000
– sequence: 2
  givenname: Yue
  surname: Pu
  fullname: Pu, Yue
  email: puyue@hhu.edu.cn
  organization: College of Energy and Electrical Engineering, Hohai University,Nanjing,China,210000
– sequence: 3
  givenname: Yukun
  surname: Gao
  fullname: Gao, Yukun
  organization: College of Energy and Electrical Engineering, Hohai University,Nanjing,China,210000
– sequence: 4
  givenname: Haoming
  surname: Liu
  fullname: Liu, Haoming
  organization: College of Energy and Electrical Engineering, Hohai University,Nanjing,China,210000
BookMark eNotj81KxDAYRSPoQsd5Ajd5gdb8NE2ylFJ1YGQWMy4EYUiTLzXQSUsaF317C87q3Ls5cB7QbRwjIIQpKSkl-rnZfTVtK4SsdMkIY6XWQlJGbtBWS0XrWlRSckbv0fcxj_bHzDlYfJhyuJhhJSSTwxixHxPexQz9-sHhNkLqF3xc5gwX3IxxDg5SiD3--B1ymAbAn9FCyibEHGB-RHfeDDNsr9yg02t7at6L_eFt17zsi1CpuhAcnOqYd6wT1lvPFeOgHeECFKstJ87TGqjTpmK-0sDEupSjykimOxB8g57-tQEAzlNaI9JyvibzP8cdU2g
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CIYCEE55749.2022.9957120
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665477321
1665477326
EndPage 5
ExternalDocumentID 9957120
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i486-53ed8b2fd2b5cfcf3823e9d035e826c30df16e1d9a42f49e259a48d18a729be53
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:11 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i486-53ed8b2fd2b5cfcf3823e9d035e826c30df16e1d9a42f49e259a48d18a729be53
PageCount 5
ParticipantIDs ieee_primary_9957120
PublicationCentury 2000
PublicationDate 2022-Nov.-3
PublicationDateYYYYMMDD 2022-11-03
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2022 IEEE 3rd China International Youth Conference on Electrical Engineering (CIYCEE)
PublicationTitleAbbrev CIYCEE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8119167
Snippet Given uncertainties of distributed generation (DG) output and multi-energy loads including electricity, heating, and cooling in integrated energy systems...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Analytical models
Electrical engineering
Fluctuations
integrated energy system
Mixed integer linear programming
multiple uncertainties
sample average approximation
Sensitivity analysis
stochastic optimization
Stochastic processes
Uncertainty
Title Stochastic Optimal Operation for Integrated Energy System Considering Multiple Uncertainties
URI https://ieeexplore.ieee.org/document/9957120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21ePCk0orf5ODRtJtsstmcyxYLWgtWqSCUbDLBgrZSW3-_SXZbEbx4SgghAzOEmUnmvUHoqkxcwil1RGXaEQ40J6W0lAjtrKCGqywivJ9u5XCYTyZq1EDXWywMAMTiM-iEafzLtwuzDk9lXaWEpMwn6DtSZhVWa1Ock6hub_DcKwohJA8AFMY69fZffVOi2-jv_0_gAWr_4O_waOtZDlED5i308rBamFcdeJXxvb_o7_rNj1BZEPvYEw821A8WFxHShys-crzpyukPw3d1BSF-9FJiOUCgVG2jcb8Y925I3RuBzHieEZGCzUvmLCuFccaF3zxQNkkF-HzBpIl1NANqlebMcQU-ydE8tzTXPpguQaRHqDlfzOEY4dJxbSgtrdWUM3CappLrhFsmM6O0OEGtoJjpR8V-Ma11cvr38hnaC7qPaL30HDVXyzVcoF3ztZp9Li-jyb4Bdayb2Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5jCvqksom_zYOPdmvSpG2eR8eG2xw4ZYIw0uSCA11lbv79Jmk3EXzxKSGQHOQId5e77zuEbvLQhIwQE4hYmoABSYM80STg0mhOFBOxR3g_DZLRKJ1OxbiGbrdYGADwxWfQclOfy9eFWruvsrYQPCHUBug7nDEalmitTXlOKNqd_nMnyzhPmIOgUNqqNvzqnOINR_fgfyIPUfMHgYfHW9tyhGqwaKCXh1WhXqVjVsb39qm_yzc7QqlDbL1P3N-QP2iceVAfLhnJ8aYvpz0MD6saQvxopfiCAEeq2kSTbjbp9IKqO0IwZ2kc8Ah0mlOjac6VUcbl80DoMOJgIwYVhdqQGIgWklHDBNgwR7JUk1RadzoHHh2j-qJYwAnCuWFSEZJrLQmjYCSJEiZDpmkSKyH5KWq4i5l9lPwXs-pOzv5evkZ7vclwMBv0R3fnaN_pwWP3ogtUXy3XcIl21ddq_rm88ur7BryvnyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+3rd+China+International+Youth+Conference+on+Electrical+Engineering+%28CIYCEE%29&rft.atitle=Stochastic+Optimal+Operation+for+Integrated+Energy+System+Considering+Multiple+Uncertainties&rft.au=Li%2C+Chengao&rft.au=Pu%2C+Yue&rft.au=Gao%2C+Yukun&rft.au=Liu%2C+Haoming&rft.date=2022-11-03&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FCIYCEE55749.2022.9957120&rft.externalDocID=9957120