Data-driven control based on marine predators algorithm for optimal tuning of the wind plant

The main challenge in controlling the wind plant nowadays is a highly arduous effort in discovering the best controller parameters of the turbines due to the wake interaction effect. The aim of this paper is to develop the data-driven control based on marine predators algorithm (MPA) for fine-tuning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 IEEE International Conference on Power and Energy (PECon) S. 203 - 208
Hauptverfasser: Tumari, Mohd Zaidi Mohd, Ahmad, Mohd Ashraf, Suid, Mohd Helmi, Ghazali, Mohd Riduwan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 05.12.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The main challenge in controlling the wind plant nowadays is a highly arduous effort in discovering the best controller parameters of the turbines due to the wake interaction effect. The aim of this paper is to develop the data-driven control based on marine predators algorithm (MPA) for fine-tuning the controller parameters of a single row of ten turbines in improving the wind plant power production according to the reference power. The real wind plant model from Denmark named Horns Rev is considered in this study. Effectiveness of the proposed method was particularly assessed according to the convergence curve and statistical analysis of the fitness function, and Wilcoxon's rank test. Comparative results alongside other existing metaheuristic-based algorithms further confirmed excellence of the proposed method through its superior performance against the slime mould algorithm (SMA), multi-verse optimizer (MVO), sine-cosine algorithm (SCA), grey wolf optimizer (GWO), and safe experimentation dynamics (SED) algorithm.
AbstractList The main challenge in controlling the wind plant nowadays is a highly arduous effort in discovering the best controller parameters of the turbines due to the wake interaction effect. The aim of this paper is to develop the data-driven control based on marine predators algorithm (MPA) for fine-tuning the controller parameters of a single row of ten turbines in improving the wind plant power production according to the reference power. The real wind plant model from Denmark named Horns Rev is considered in this study. Effectiveness of the proposed method was particularly assessed according to the convergence curve and statistical analysis of the fitness function, and Wilcoxon's rank test. Comparative results alongside other existing metaheuristic-based algorithms further confirmed excellence of the proposed method through its superior performance against the slime mould algorithm (SMA), multi-verse optimizer (MVO), sine-cosine algorithm (SCA), grey wolf optimizer (GWO), and safe experimentation dynamics (SED) algorithm.
Author Tumari, Mohd Zaidi Mohd
Ahmad, Mohd Ashraf
Ghazali, Mohd Riduwan
Suid, Mohd Helmi
Author_xml – sequence: 1
  givenname: Mohd Zaidi Mohd
  surname: Tumari
  fullname: Tumari, Mohd Zaidi Mohd
  email: mohdzaidi.tumari@utem.edu.my
  organization: Universiti Teknikal Malaysia Melaka Hang Tuah Jaya,Faculty of Electrical & Electronics Engineering Technology,Melaka,Malaysia
– sequence: 2
  givenname: Mohd Ashraf
  surname: Ahmad
  fullname: Ahmad, Mohd Ashraf
  email: mashraf@ump.edu.my
  organization: Universiti Malaysia Pahang Pekan,Faculty of Electrical & Electronics Engineering Technology,Pahang,Malaysia
– sequence: 3
  givenname: Mohd Helmi
  surname: Suid
  fullname: Suid, Mohd Helmi
  email: mhelmi@ump.edu.my
  organization: Universiti Malaysia Pahang Pekan,Faculty of Electrical & Electronics Engineering Technology,Pahang,Malaysia
– sequence: 4
  givenname: Mohd Riduwan
  surname: Ghazali
  fullname: Ghazali, Mohd Riduwan
  email: riduwan@ump.edu.my
  organization: Universiti Malaysia Pahang Pekan,Faculty of Electrical & Electronics Engineering Technology,Pahang,Malaysia
BookMark eNotj8tOwzAUBY0ECyj9AhbcH0jwM7GXKJSHVAkWXSJVTn3dWkrsyDEg_p5IdHVmNZpzQy5jikjIPaM1Y9Q8fGy6FJWUytSccl4bo7U26oKsTatZ0yhJjaH8mnw-2WIrl8M3RjikWHIaoLczOkgRRptDRJgyOltSnsEOx5RDOY3gU4Y0lTDaAcpXDPEIyUM5IfyE6GAabCy35MrbYcb1eVdk97zZda_V9v3lrXvcVkFqVbElzTluPNdeIbOtl40TokcrELnUmi5ANUpxEAoNMtNz01PGnG2pVEKsyN2_NiDifspLU_7dny-LP03BUl0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PECon54459.2022.9988895
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665409902
1665409908
EndPage 208
ExternalDocumentID 9988895
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i485-1888dd29f28f5e1a7f46d33bea3ee24880a3e08e43c35e9e19b29b011da704533
IEDL.DBID RIE
IngestDate Thu May 29 05:57:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i485-1888dd29f28f5e1a7f46d33bea3ee24880a3e08e43c35e9e19b29b011da704533
PageCount 6
ParticipantIDs ieee_primary_9988895
PublicationCentury 2000
PublicationDate 2022-Dec.-5
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-5
  day: 05
PublicationDecade 2020
PublicationTitle 2022 IEEE International Conference on Power and Energy (PECon)
PublicationTitleAbbrev PECON
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8153377
Snippet The main challenge in controlling the wind plant nowadays is a highly arduous effort in discovering the best controller parameters of the turbines due to the...
SourceID ieee
SourceType Publisher
StartPage 203
SubjectTerms Heuristic algorithms
Marine predators algorithm
metaheuristic optimization
Optimization methods
Production
renewable energy
Statistical analysis
System performance
Tuning
Turbines
wind farm
wind plant
Title Data-driven control based on marine predators algorithm for optimal tuning of the wind plant
URI https://ieeexplore.ieee.org/document/9988895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b8IwELUAdejUVlD1Wzd0rIHESWzPFNQJMTAwVEJOfGmRIEYh0L_fc4ioKnXpZlmREl10fu_Z93yMPfte24JwiafKSB6hSrhCMeQ1WOhEChPndbMJOZ2qxULPWuzl5IVBxLr4DPt-WJ_lW5ft_VbZgKSBUjpus7aU8ujVakq2gqEezMYjV_i7Zbz_JAz7zdO_2qbUqDG5-N_7Llnvx34HsxOwXLEWFl32_moqw23pVydoCszBY5AFV8DGeBcfbEu0XkXvwKw_HOn-zw0QKwVHC8PGrKHa-20QcDkQ74Mv0uOwXVNse2w-Gc9Hb7xpjcBXkYp5QN9lbajzUOUxBkbmUWKFSNEIxNDnJA2GCiORiRg1BjoNdUqpbI0kDifENesUrsAbBp5DRBmlodCC1I9NScAlmoRKSsQuifCWdX1gltvj5RfLJiZ3f0_fs3Mf-7reI35gnarc4yM7yw7Valc-1X_sG98pmEQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNGTGjD-tgePFtjabe0ZIRiRcODAwYR065uawEZg6L_v61gwJl68NcuSLq95_b6ve18fwL3rtS0Il3isTMQlqpArFB1egoUOI2GCtGw2EY1GajrV4xo87LwwiFgWn2HLDct_-TZPNu6orE3SQCkd7MF-IKXvbd1aVdGW19Htca-bZ-52GedA8f1W9f6vxiklbvSP_zfjCTR_DHhsvIOWU6hh1oDXR1MYblduf2JViTlzKGRZnrGFcT4-tlyhdTp6zcz8LSfl_75gxEtZTlvDwsxZsXEHISxPGTE_9kWKnC3nFN0mTPq9SXfAq-YI_EOqgHv0Xdb6OvVVGqBnolSGVogYjUD0XVbSoKNQikQEqNHTsa9jSmZrImJxQpxBPcszPAfmWIRMKBGFFqR_bEwSLtQkVWKidqHEC2i4wMyW2-svZlVMLv9-fAeHg8nLcDZ8Gj1fwZFbh7L6I7iGerHa4A0cJJ_Fx3p1W67eN_irm4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Power+and+Energy+%28PECon%29&rft.atitle=Data-driven+control+based+on+marine+predators+algorithm+for+optimal+tuning+of+the+wind+plant&rft.au=Tumari%2C+Mohd+Zaidi+Mohd&rft.au=Ahmad%2C+Mohd+Ashraf&rft.au=Suid%2C+Mohd+Helmi&rft.au=Ghazali%2C+Mohd+Riduwan&rft.date=2022-12-05&rft.pub=IEEE&rft.spage=203&rft.epage=208&rft_id=info:doi/10.1109%2FPECon54459.2022.9988895&rft.externalDocID=9988895