Big Data Analytics for Cyber Security using binary crow search algorithm based Deep Neural Network
Cyber security is the one of the big challenges in Big Data Analytics. The prediction of cyber attackers or threats is performed by presenting machine learning algorithms and Deep Learning algorithms. However, accuracy of the prediction model is further to be improved so that an enhanced DNN, a Deep...
Uloženo v:
| Vydáno v: | 2022 IEEE 7th International conference for Convergence in Technology (I2CT) s. 1 - 5 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
07.04.2022
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Cyber security is the one of the big challenges in Big Data Analytics. The prediction of cyber attackers or threats is performed by presenting machine learning algorithms and Deep Learning algorithms. However, accuracy of the prediction model is further to be improved so that an enhanced DNN, a Deep Neural Network is offered here in this paper and this enhanced DNN is utilized as a prediction model. The performance of the DNN is improved with the Binary Crow Search Algorithm (BCSA). Using this algorithm, weight parameters of DNN are optimized. Simulation outcomes illustrate that the projected prediction model outpaces the existing DNN in terms of Recall, Precision, F-score and Accuracy. |
|---|---|
| DOI: | 10.1109/I2CT54291.2022.9824868 |