Heuristically Modified Fusion-based Hybrid Algorithm for Enhanced Dental Caries Segmentation
Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis process. In bio medics, Artificial Intelligence (AI) methods have a lifelong impact and attain better results. The purpose of this paper is t...
Uložené v:
| Vydané v: | 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) s. 1 - 7 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
28.01.2022
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis process. In bio medics, Artificial Intelligence (AI) methods have a lifelong impact and attain better results. The purpose of this paper is to estimatethe exactrecognition of caries by feature extraction and classification of the dental images by amalgamation. The research work highlightsthe efficiency of intelligent algorithms for the recognition of dental cavities. The main intention of this paper is to improve a novelfusion model-based dental caries segmentation model that is useful for timely identification and treatment. The suggested model undergoes three phases, namely pre-processing, caries segmentation, and post-processing. The images are pre-processed by the contrast enhancement, bilateral filtering, and Otsu thresholding. Then, the Heuristically Modified Fusion-based Fuzzy C Means (FCM) clustering and Binary Thresolding (HMF -FCBT)is developed for caries segmentation. Here, the Coyote Optimization Algorithm (COA) algorithm is employed for optimizing the criteria such as cluster centroid and iteration of FCM, threshold, and fusion weight, thus improving the segmentation performance. Finally, the morphological operation is performed as the post-processing of segmentation. Thus, the suggested segmentation has performed well in comparison with other conventional approaches. |
|---|---|
| AbstractList | Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis process. In bio medics, Artificial Intelligence (AI) methods have a lifelong impact and attain better results. The purpose of this paper is to estimatethe exactrecognition of caries by feature extraction and classification of the dental images by amalgamation. The research work highlightsthe efficiency of intelligent algorithms for the recognition of dental cavities. The main intention of this paper is to improve a novelfusion model-based dental caries segmentation model that is useful for timely identification and treatment. The suggested model undergoes three phases, namely pre-processing, caries segmentation, and post-processing. The images are pre-processed by the contrast enhancement, bilateral filtering, and Otsu thresholding. Then, the Heuristically Modified Fusion-based Fuzzy C Means (FCM) clustering and Binary Thresolding (HMF -FCBT)is developed for caries segmentation. Here, the Coyote Optimization Algorithm (COA) algorithm is employed for optimizing the criteria such as cluster centroid and iteration of FCM, threshold, and fusion weight, thus improving the segmentation performance. Finally, the morphological operation is performed as the post-processing of segmentation. Thus, the suggested segmentation has performed well in comparison with other conventional approaches. |
| Author | Reddy, P. Ramana Rao, S. Nagaraja Kumari, A. Ramana |
| Author_xml | – sequence: 1 givenname: A. Ramana surname: Kumari fullname: Kumari, A. Ramana email: ramani.etm@gmail.com organization: Jawaharlal Nehru Technological University,Department of ECE,Ananthapur,AP,India – sequence: 2 givenname: S. Nagaraja surname: Rao fullname: Rao, S. Nagaraja email: suryakari2k9@gmail.com organization: G. Pullareddy Engineering College (Autonomous),Department of ECE,Kurnool,AP,India – sequence: 3 givenname: P. Ramana surname: Reddy fullname: Reddy, P. Ramana email: prrjntu@gmail.com organization: JNTUA College of Engineering,Department of ECE,Anantapur,AP,India |
| BookMark | eNotj8lOwzAYhI0EByh9Ag74BRJix-sxCi2p1IoDPSJVXn63lrIgJz3k7Qmip9HMpxlpntB9P_SA0CspckIK_VbVdbXjpZZFTgtKcy055UrdobWWigjBmeZU80f03cA1xXGKzrTtjA-DjyGCx9vrGIc-s2ZcTDPbFD2u2vOQ4nTpcBgS3vQX07uFvkM_mRbXJkUY8Recu79gWurP6CGYdoT1TVfouN0c6ybbf37s6mqfRaZYFoIsjAVDS--8CQDEEWelkyIUpfeBMW2BUHCaUGW5EVpKQbmhgltgSpQr9PI_GwHg9JNiZ9J8ul0ufwEuYVL- |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ACCAI53970.2022.9752588 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Dentistry |
| EISBN | 9781665495295 1665495294 |
| EndPage | 7 |
| ExternalDocumentID | 9752588 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i484-ff70abea23dcdafee1c1cb7c76f03ddf449be12ec9128b5a6977625a265be4863 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:36:42 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i484-ff70abea23dcdafee1c1cb7c76f03ddf449be12ec9128b5a6977625a265be4863 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_9752588 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-28 |
| PublicationDateYYYYMMDD | 2022-01-28 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) |
| PublicationTitleAbbrev | ACCAI |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.7839271 |
| Snippet | Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial intelligence Clustering algorithms Dental caries segmentation Dentistry Feature extraction Filtering Heuristic algorithms Heuristically Modified Fusion-based Fuzzy C Means clustering and Binary Thresolding Image segmentation Optimization |
| Title | Heuristically Modified Fusion-based Hybrid Algorithm for Enhanced Dental Caries Segmentation |
| URI | https://ieeexplore.ieee.org/document/9752588 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qhfbUh5a-yaHHrmaz2c3uUVbFQitCpXgoSB4TFXS3iFvw3zdZF0uhl95CCARmDt_MN_PNIPRIgRLh6oNuXr7HqAJPKul7oQqBidgHv-Q73l_4aBRPp8m4hp4OWhgAKJvPoO2OZS1f56pwVFkn4SEN47iO6pxHe61W1bLlk6TTTdPuc2jxldi0j9J29frX2pQSNQan__vvDLV-5Hd4fACWc1SD7AId91xfj1vN1kQfQyj2E5bFarXDr7leGhtK4kHhuC_PIZPGw50TY-Huap5vltvFGtvwFPezRVnyx71SBonTMlXGbzBfVyKkrIUmg_4kHXrVmgRvyWLmGcOJkCBooJUWBsBXvpJc8ciQQGvDWCLBp6ASC0UyFJGN-GzSI2gUSmBxFFyiRpZncIUw0yKhvtRBxIExEyZEGBlxZiJOYi3INWo6I80-94MwZpV9bv6-vkUnzg-Or6DxHWpsNwXcoyP1ZY21eSi99w2R4p64 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6sLdhTH1r67h56bDTZbLLJUaISqYpQKR4Kso9ZFTQpYgr--2ZjsBR66W1ZFhZmDt_MN_PNIPRMgNjc1AfNvHyLEgmWkMKxPOkB5YEDTsF3vA_YaBRMp-G4gl4OWhgAKJrPoGmORS1fpTIzVFkrZB7xguAIHZvNWaVaq2zacuyw1Y6idt_LEdbOEz9CmuX7X4tTCtzonf3vx3PU-BHg4fEBWi5QBZJLVOuYzh6znK2OPmLI9jOW-Wq1w8NULXUeTOJeZtgvy2CTwvHOyLFwezVPN8vtYo3zABV3k0VR9MedQgiJoyJZxm8wX5cypKSBJr3uJIqtclGCtaQBtbRmNhfAiauk4hrAkY4UTDJf265SmtJQgENAhjkYCY_7ecyXpz2c-J4AGvjuFaomaQLXCFPFQ-II5foMKNVeaHMtfEa1z-xAcfsG1Y2RZp_7URiz0j63f18_oVo8GQ5mg_7o9Q6dGp8Y9oIE96i63WTwgE7kV264zWPhyW8CUKIB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Advances+in+Computing%2C+Communication+and+Applied+Informatics+%28ACCAI%29&rft.atitle=Heuristically+Modified+Fusion-based+Hybrid+Algorithm+for+Enhanced+Dental+Caries+Segmentation&rft.au=Kumari%2C+A.+Ramana&rft.au=Rao%2C+S.+Nagaraja&rft.au=Reddy%2C+P.+Ramana&rft.date=2022-01-28&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FACCAI53970.2022.9752588&rft.externalDocID=9752588 |