Heuristically Modified Fusion-based Hybrid Algorithm for Enhanced Dental Caries Segmentation

Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis process. In bio medics, Artificial Intelligence (AI) methods have a lifelong impact and attain better results. The purpose of this paper is t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI) s. 1 - 7
Hlavní autori: Kumari, A. Ramana, Rao, S. Nagaraja, Reddy, P. Ramana
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 28.01.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis process. In bio medics, Artificial Intelligence (AI) methods have a lifelong impact and attain better results. The purpose of this paper is to estimatethe exactrecognition of caries by feature extraction and classification of the dental images by amalgamation. The research work highlightsthe efficiency of intelligent algorithms for the recognition of dental cavities. The main intention of this paper is to improve a novelfusion model-based dental caries segmentation model that is useful for timely identification and treatment. The suggested model undergoes three phases, namely pre-processing, caries segmentation, and post-processing. The images are pre-processed by the contrast enhancement, bilateral filtering, and Otsu thresholding. Then, the Heuristically Modified Fusion-based Fuzzy C Means (FCM) clustering and Binary Thresolding (HMF -FCBT)is developed for caries segmentation. Here, the Coyote Optimization Algorithm (COA) algorithm is employed for optimizing the criteria such as cluster centroid and iteration of FCM, threshold, and fusion weight, thus improving the segmentation performance. Finally, the morphological operation is performed as the post-processing of segmentation. Thus, the suggested segmentation has performed well in comparison with other conventional approaches.
AbstractList Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis process. In bio medics, Artificial Intelligence (AI) methods have a lifelong impact and attain better results. The purpose of this paper is to estimatethe exactrecognition of caries by feature extraction and classification of the dental images by amalgamation. The research work highlightsthe efficiency of intelligent algorithms for the recognition of dental cavities. The main intention of this paper is to improve a novelfusion model-based dental caries segmentation model that is useful for timely identification and treatment. The suggested model undergoes three phases, namely pre-processing, caries segmentation, and post-processing. The images are pre-processed by the contrast enhancement, bilateral filtering, and Otsu thresholding. Then, the Heuristically Modified Fusion-based Fuzzy C Means (FCM) clustering and Binary Thresolding (HMF -FCBT)is developed for caries segmentation. Here, the Coyote Optimization Algorithm (COA) algorithm is employed for optimizing the criteria such as cluster centroid and iteration of FCM, threshold, and fusion weight, thus improving the segmentation performance. Finally, the morphological operation is performed as the post-processing of segmentation. Thus, the suggested segmentation has performed well in comparison with other conventional approaches.
Author Reddy, P. Ramana
Rao, S. Nagaraja
Kumari, A. Ramana
Author_xml – sequence: 1
  givenname: A. Ramana
  surname: Kumari
  fullname: Kumari, A. Ramana
  email: ramani.etm@gmail.com
  organization: Jawaharlal Nehru Technological University,Department of ECE,Ananthapur,AP,India
– sequence: 2
  givenname: S. Nagaraja
  surname: Rao
  fullname: Rao, S. Nagaraja
  email: suryakari2k9@gmail.com
  organization: G. Pullareddy Engineering College (Autonomous),Department of ECE,Kurnool,AP,India
– sequence: 3
  givenname: P. Ramana
  surname: Reddy
  fullname: Reddy, P. Ramana
  email: prrjntu@gmail.com
  organization: JNTUA College of Engineering,Department of ECE,Anantapur,AP,India
BookMark eNotj8lOwzAYhI0EByh9Ag74BRJix-sxCi2p1IoDPSJVXn63lrIgJz3k7Qmip9HMpxlpntB9P_SA0CspckIK_VbVdbXjpZZFTgtKcy055UrdobWWigjBmeZU80f03cA1xXGKzrTtjA-DjyGCx9vrGIc-s2ZcTDPbFD2u2vOQ4nTpcBgS3vQX07uFvkM_mRbXJkUY8Recu79gWurP6CGYdoT1TVfouN0c6ybbf37s6mqfRaZYFoIsjAVDS--8CQDEEWelkyIUpfeBMW2BUHCaUGW5EVpKQbmhgltgSpQr9PI_GwHg9JNiZ9J8ul0ufwEuYVL-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACCAI53970.2022.9752588
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISBN 9781665495295
1665495294
EndPage 7
ExternalDocumentID 9752588
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i484-ff70abea23dcdafee1c1cb7c76f03ddf449be12ec9128b5a6977625a265be4863
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:42 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-ff70abea23dcdafee1c1cb7c76f03ddf449be12ec9128b5a6977625a265be4863
PageCount 7
ParticipantIDs ieee_primary_9752588
PublicationCentury 2000
PublicationDate 2022-Jan.-28
PublicationDateYYYYMMDD 2022-01-28
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI)
PublicationTitleAbbrev ACCAI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7839271
Snippet Segmentation is a primarystage in any image applications. The accuracy of the segmentation method establishes the achievement or failure of the final analysis...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial intelligence
Clustering algorithms
Dental caries segmentation
Dentistry
Feature extraction
Filtering
Heuristic algorithms
Heuristically Modified Fusion-based Fuzzy C Means clustering and Binary Thresolding
Image segmentation
Optimization
Title Heuristically Modified Fusion-based Hybrid Algorithm for Enhanced Dental Caries Segmentation
URI https://ieeexplore.ieee.org/document/9752588
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA4qhfbUh5a-yaHHrmaz2c3uUVbFQitCpXgoSB4TFXS3iFvw3zdZF0uhl95CCARmDt_MN_PNIPRIgRLh6oNuXr7HqAJPKul7oQqBidgHv-Q73l_4aBRPp8m4hp4OWhgAKJvPoO2OZS1f56pwVFkn4SEN47iO6pxHe61W1bLlk6TTTdPuc2jxldi0j9J29frX2pQSNQan__vvDLV-5Hd4fACWc1SD7AId91xfj1vN1kQfQyj2E5bFarXDr7leGhtK4kHhuC_PIZPGw50TY-Huap5vltvFGtvwFPezRVnyx71SBonTMlXGbzBfVyKkrIUmg_4kHXrVmgRvyWLmGcOJkCBooJUWBsBXvpJc8ciQQGvDWCLBp6ASC0UyFJGN-GzSI2gUSmBxFFyiRpZncIUw0yKhvtRBxIExEyZEGBlxZiJOYi3INWo6I80-94MwZpV9bv6-vkUnzg-Or6DxHWpsNwXcoyP1ZY21eSi99w2R4p64
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La8JAEF6sLdhTH1r67h56bDTZbLLJUaISqYpQKR4Kso9ZFTQpYgr--2ZjsBR66W1ZFhZmDt_MN_PNIPRMgNjc1AfNvHyLEgmWkMKxPOkB5YEDTsF3vA_YaBRMp-G4gl4OWhgAKJrPoGmORS1fpTIzVFkrZB7xguAIHZvNWaVaq2zacuyw1Y6idt_LEdbOEz9CmuX7X4tTCtzonf3vx3PU-BHg4fEBWi5QBZJLVOuYzh6znK2OPmLI9jOW-Wq1w8NULXUeTOJeZtgvy2CTwvHOyLFwezVPN8vtYo3zABV3k0VR9MedQgiJoyJZxm8wX5cypKSBJr3uJIqtclGCtaQBtbRmNhfAiauk4hrAkY4UTDJf265SmtJQgENAhjkYCY_7ecyXpz2c-J4AGvjuFaomaQLXCFPFQ-II5foMKNVeaHMtfEa1z-xAcfsG1Y2RZp_7URiz0j63f18_oVo8GQ5mg_7o9Q6dGp8Y9oIE96i63WTwgE7kV264zWPhyW8CUKIB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Advances+in+Computing%2C+Communication+and+Applied+Informatics+%28ACCAI%29&rft.atitle=Heuristically+Modified+Fusion-based+Hybrid+Algorithm+for+Enhanced+Dental+Caries+Segmentation&rft.au=Kumari%2C+A.+Ramana&rft.au=Rao%2C+S.+Nagaraja&rft.au=Reddy%2C+P.+Ramana&rft.date=2022-01-28&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FACCAI53970.2022.9752588&rft.externalDocID=9752588