Data-driven robust distributed MPC for collision avoidance formation navigation of constrained nonholonomic multi-robot systems

In this work, we consider the robust collision avoidance formation navigation problem for multiple constrained nonholonomic robots with uncertain dynamics. Distributed model predictive control (MPC) based method is proposed in view of its ability to handle the input and state constraints of the robo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS) S. 1 - 5
Hauptverfasser: Fu, Junjie, Wen, Guanghui
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 28.10.2022
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, we consider the robust collision avoidance formation navigation problem for multiple constrained nonholonomic robots with uncertain dynamics. Distributed model predictive control (MPC) based method is proposed in view of its ability to handle the input and state constraints of the robots explicitly. A synchronous non-iterative distributed algorithm is employed which reduces the communication requirement of the system. Furthermore, to enable the state trajectory prediction under uncertain robot dynamics, a data-driven online learning method is proposed to generate an accurate model of the nonholonomic robots adaptively. Based on the proposed control strategy, it is shown that robust collision avoidance formation navigation is successfully achieved while the input and state constraints of the robots are satisfied. Simulation examples are given to demonstrate the performance of the data-driven learning method and the distributed MPC based formation navigation controller.
AbstractList In this work, we consider the robust collision avoidance formation navigation problem for multiple constrained nonholonomic robots with uncertain dynamics. Distributed model predictive control (MPC) based method is proposed in view of its ability to handle the input and state constraints of the robots explicitly. A synchronous non-iterative distributed algorithm is employed which reduces the communication requirement of the system. Furthermore, to enable the state trajectory prediction under uncertain robot dynamics, a data-driven online learning method is proposed to generate an accurate model of the nonholonomic robots adaptively. Based on the proposed control strategy, it is shown that robust collision avoidance formation navigation is successfully achieved while the input and state constraints of the robots are satisfied. Simulation examples are given to demonstrate the performance of the data-driven learning method and the distributed MPC based formation navigation controller.
Author Wen, Guanghui
Fu, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  surname: Fu
  fullname: Fu, Junjie
  email: fujunjie89@gmail.com
  organization: Southeast University,School of Mathematics,Nanjing,China,211189
– sequence: 2
  givenname: Guanghui
  surname: Wen
  fullname: Wen, Guanghui
  email: wenguanghui@gmail.com
  organization: Southeast University,School of Mathematics,Nanjing,China,211189
BookMark eNotUF1LwzAUjaAPOvcLBMkf6EzSNk0epVMnTCa493HbJHqhTaRJC3vyr9uxPd3L4Xzcc-_ItQ_eEvLI2Ypzpp_Wu_qrLLnOV4IJsdJaVpXUV2SpK8WlLItSKyFuyd8aEmRmwMl6OoRmjIkajGnAZkzW0I_Pmrow0DZ0HUYMnsIU0IBv7QnvIZ0wDxN-n9fgZq6fDQD9rJ_P-gld8KHHlvZjlzCbU0Ki8RiT7eM9uXHQRbu8zAXZv77s60223b2918_bDAtVZEowpiBX0iktDDAOshJFwVrBTCUMn9tx3nKhHJgm504bp6xUlknbci6bfEEezrZorT38DtjDcDxcvpL_A1q8X8k
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS55193.2022.9967769
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665459822
1665459824
EndPage 5
ExternalDocumentID 9967769
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i484-82008a386f892da01a672440c20d72d196711c128fadb31f9df8e68e06ec116b3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:22 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i484-82008a386f892da01a672440c20d72d196711c128fadb31f9df8e68e06ec116b3
PageCount 5
ParticipantIDs ieee_primary_9967769
PublicationCentury 2000
PublicationDate 2022-Oct.-28
PublicationDateYYYYMMDD 2022-10-28
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8112963
Snippet In this work, we consider the robust collision avoidance formation navigation problem for multiple constrained nonholonomic robots with uncertain dynamics....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Collision avoidance
data-driven learning
formation navigation
input and state constraints
Learning systems
Multi-robot systems
Multiple nonholonomic robots
Navigation
Predictive models
Trajectory
Title Data-driven robust distributed MPC for collision avoidance formation navigation of constrained nonholonomic multi-robot systems
URI https://ieeexplore.ieee.org/document/9967769
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVJ6NCpLUnpNxo6VomlJPqYk4YObRpohmxB0kmQxS6O47V_vZJsUgpduh1CcKDDd0_yvXcIPXrlqJ1A0m21JBicGOUd4WYKigLz0Kjrv4rlUm42atVBT0cujHMuNZ-5YTTTv3wo7CE-lY0CNheCqy7qCiEarlZL-qWZGs3fZx_TCEjCrY-xYbv519SUVDQWZ_9zd44GP-w7vDrWlQvUcXkffc11pQmUMTnhsjCHfYUhit7GeVUO8NtqhgP-xDGuiS6OdV3sIMYUHwmKONd1ktQIZuHD3igfqwPOBJwXecyDiaSMU5chCV6KCjdSz_sBWi-e17MX0g5PILuJnBAZ-xr0WHIvFQOdUc1FqOSZZRkIBuG7E5TaUJy8BjOmXoGXjkuXcWcp5WZ8iXrBs7tCmIP0PlxljdcBvlimTHwtMpQzp7TzcI368ey2n408xrY9tpu_l2_RaQxPTP9M3qFeVR7cPTqxdbXblw8ppt-mxKjb
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0QTfSkBozf9uDRwrYs3faMEoyAJHLgRtpOm3BhzbJw9a_bdjcYEy_eJk2TSTpp37Sd9wahRyctNSlE3VZDvMGJls4SrvsgKTAHlbr-OJtOxWIhZw30tOfCWGtj8ZntBDP-5UNutuGprOtz8yzj8gAd9tOU0YqtVdN-aSK7z--Dj35ISfy9j7FOPf1X35QIG8PT_zk8Q-0f_h2e7ZHlHDXsuoW-nlWpCBTheMJFrrebEkOQvQ0dqyzgyWyAfQaKQ2QjYRyrXb6CEFW8pyjitdpFUQ1v5s7PDQKyymeagNf5OpyEkaaMY50h8V7yEldiz5s2mg9f5oMRqdsnkFUqUiJCZYPqCe6EZKASqnjmsTwxLIGMgd95GaXGw5NToHvUSXDCcmETbg2lXPcuUNN7tpcIcxDO-cusdsonMIZJHd6LNOXMSmUdXKFWWLvlZyWQsayX7frv4Qd0PJpPxsvx6_TtBp2EUAUwYOIWNctia-_QkdmVq01xH-P7DZavrCI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+4th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Data-driven+robust+distributed+MPC+for+collision+avoidance+formation+navigation+of+constrained+nonholonomic+multi-robot+systems&rft.au=Fu%2C+Junjie&rft.au=Wen%2C+Guanghui&rft.date=2022-10-28&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FDOCS55193.2022.9967769&rft.externalDocID=9967769